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The Long-Term Effect of Relational Information in Classification Learning
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This study examines the long-term effect of mutual information in the learning of Shepardian
classifications. Mutual information is a measure of the complexity of the relationship between
features because it quantifies how the features relate to each other. For instance, in various cat-
egorization models, Type VI concepts –originally studied by Shepard, Hovland, and Jenkins
(1961)– are unanimously judged to be the most complex kind of 3D Boolean concepts. This
has been largely confirmed by empirical data. Yet, it is apparently inconsistent with the fact that
this concept entails the greatest amount of mutual information of all the 3D Boolean concepts.
The present study was aimed at verifying whether individuals can use relational information,
in the long run, to devise easier strategies for category learning. Subject performance was mea-
sured repeatedly for one hour on either successive Type VI concepts (using different features
between problems) or successive Type IV concepts. The results showed that shortly after the
second problem, Type VI concepts became easier to learn than Type IV ones. The gap between
the mean per-problem error rates of the two concepts continued to increase as the number of
problems increased. Two other experiments tended to confirm this trend. The discussion brings
up the idea of combining different metrics in categorization models in order to include every
possible way for subjects to simplify the categorization process.

The aim of this paper is to show that certain concepts (like
the Type VI classification, described later) entail relational
features that can facilitate the learning of these concepts in
the long term. Mutual information is investigated here as a
generic measure of relational information. The relatedness
between variables is not supported by most categorization
models which see Type VI concepts as the most difficult
kind. However, the three experiments presented reveal that
individuals do use relational information in the long run and
eventually find Type VI concepts easier. I discuss the fact
that classification models tend to rely on single metrics that
do not take into account the multiple strategies that individu-
als might use simultaneously.

Mutual information is a generic measure of relational in-
formation or redundancy between variables which has been
developed within the context of information theory (Shan-
non, 1948; Garner, 1962). In communicational systems, mu-
tual information can be understood as the amount of trans-
mitted information between input and output. If the input
is correlated to the output, it means that all information has
been transmitted without any loss of information. Informa-
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tion theory was extensively used in the 1950s and 1960s, spe-
cially for measuring the maximal amount of information that
can be transmitted by subjects without error (the reader will
find introductory presentations of this approach in Attneave,
1959; Coombs, Dawes, & Tversky, 1970). In an early work
(Miller, 1956, one of the most cited of the Psychological Re-
view, reprinted in Miller, 1994), Miller related several ex-
periments on absolute judgments which tended to show that
the channel capacity of subjects was limited to about 7 al-
ternative stimuli (about log2(7) = 2.8 bits), after which the
information could not be transmitted without errors (the sub-
jects could not perfectly match the set of responses to the
set of stimuli). Simultaneously, Miller began contributing
to the decline of information theory by making a distinction
between bits of information and chunks of information. His
argument was that the memory span is limited in the number
of chunks (7), but not in the number of bits, thus showing
that short-term memory does not fit a model of channel ca-
pacity 1. Luce (2003) gives an interesting historical account
of the shifting away from information theory in psychology
after the 1960s. Despite this shortcoming, the channel capac-
ity model is still used in absolute identification experiments
(Houtsma, 1983; Mori, 1998) or in other domains such as
intelligence measurement (Lehrl & Fischer, 1990). Mutual
information on more than two variables is more rarely in-

1 Miller’s argument was as follows: the processing of a numeri-
cal digit requires 3.3 bits because the best encoding scheme for the
10 digits needs a combination of 3.3 binary digits (log2(10) = 3.3).
If the short-term memory capacity extends to 7 numerical digits, the
sum of information that can be transmitted in short-term memory is
7×3.3 = 23. This limitation should then be applied to other items.
For instance, because words require around 10 bits of coding, short-
term memory should be limited to around 2.3 words. However, as
reported by Miller, the capacity is rather limited to 6 or 7 words.
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vestigated in psychology (cf. Fass, 2006, who gives a com-
prehensive review and proposes direct applications in human
causal learning). The aim of this paper is to demonstrate that
mutual information is a very useful tool indicating how sets
of variables are related to one another. Some detailed expla-
nations for computing mutual information are given below
and in the appendix.

First, two examples of concepts that might be learned us-
ing relational information (including the Type VI concept)
are given. This is followed by an overview of a subset of
classification models which unanimously claim that Type VI
concepts are the most complex kinds of three dimensional
concepts, a claim that the mutual information metric refutes.

Simplicity of Relational Concepts: XOR and Type
VI

A couple of strategies based on relational information
might be used to learn the two concepts presented in Ta-
ble 1. Concepts can be viewed as categorization situations
restricted to two categories only (the category of positive ex-
amples versus the category of negative examples), no matter
the number of input dimensions (some features). This article
deals with artificial concepts created by arbitrarily assigning
positive membership to a list of stimuli. Artificial concepts
are specially adapted to testing cognitive models because the
difficulty can be manipulated using different mappings be-
tween the critical features and the categories. The first con-
cept presented in the table is the exclusive OR (generally
called XOR in logic) and the second is called Type VI (orig-
inally studied and named by Shepard, Hovland, & Jenkins,
1961). All stimuli have been generated using combinations
of black and white balls, but other features could have been
used as well. Here, each group of horizontally aligned balls
represents a single stimulus. Using N balls in a row and two
colors, 2N stimuli can be built. The categories are chosen
using + (for positive examples) and - symbols (for negative
examples). In the XOR, as in any other concept, the learner
needs to differentiate the positive examples from the negative
ones. If one feature was characteristic of the class (that would
be the case if, for instance, all positive stimuli had a first ball
colored in white), subjects could use a concise rule such as
“if the first ball is white, then the stimulus is positive”. Be-
cause no feature is characteristic of the class in the XOR, it
first appears that the learner must memorize that “if the first
ball is white and the second is black, or if the first ball is
black and the second is white, then the stimulus is positive”.
In this case, the rule strictly corresponds to the list of the pos-
itive stimuli. However, by using relational information in the
XOR, one can notice that the stimuli are simply positive if the
balls have different colors, which might be more economical.
Here, the features of one ball or the other is not diagnostic
when one notices that the relation “different” between the
two balls transcends the particular feature values. Similarly,

the Type VI concept has apparently no critical feature, so the
four positive examples seem to have to be learned by rote.
However, using relational information one might notice that
the second and third balls have different colors when the first
is white, whereas they have identical colors when the first is
black. Such higher order rules might facilitate the learning
of the XOR and the Type VI classifications. Relational in-
formation is even more powerful in Type VI: what was true
for the first ball is also true for the second and the third (for
instance, if the third ball is white, the stimulus is positive if
the other two balls have different colors, and so forth); also,
relational information comes with a numerical facilitation as
one might notice that the stimuli are positive only if the num-
ber of black balls is odd (i.e., the stimulus is positive if it con-
tains one or three black balls). However, mutual information
is not always that readily apparent. For instance, using more
complex stimuli in which dimensions are incommensurate,
mutual information needs to be used by subjects in a more
complex manner instead of simply using same/different rela-
tionships. The aim of the paper is to show that mutual infor-
mation can also allow strategies based on simple hierarchies
of rules in some circumstances. These strategies can be used
as a powerful abstraction process to reduce the apparent com-
plexity in certain categorization tasks. The hypothesis here
is that such higher order rules might be discovered as long
as enough time is allocated to learning. We will briefly ex-
amine a subset of classification models which does not take
such information into account.

Complexity of Type VI Concepts

In the categorization literature, the goal is usually to deter-
mine which model best predicts participant performance. To
the best of my knowledge, none of the categorization mod-
els offer a metric of conceptual complexity which relies on
relational information. The present study demonstrates that
none of these models is able to predict the beneficial long-
term effect of relational information on learning.

Figure 1 shows the six basic concept types with three
Boolean dimensions and four positive examples (first stud-
ied by Shepard et al., 1961). Table 2 indicates how these six
concepts are ranked, by five classical categorization models,
according to complexity. The literature on categorization is
mainly devoted to comparing exemplar models that use sim-
ilarity as a metric in the psychological space (Estes, 1994;
Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky, 1984;
Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994)
and logical models that use compression to abstract the sim-
plest categorization rules (Bourne, 1970; Bruner, Goodnow,
& Austin, 1956; Bradmetz & Mathy, 2008; Feldman, 2000,
2006; Hovland, 1966; Lafond, Lacouture, & Mineau, 2007;
Mathy & Bradmetz, 2004; Nosofsky, Palmeri, & McKinley,
1994; Vigo, 2006). Therefore, the opposition lies mainly
between geometrical metrics and algorithmic metrics. Sim-
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Table 1
The XOR and TYPE VI concepts

Note. Column C indicates the category membership; w (white) and
b (black) indicate the color of the balls used in the stimuli. Each
group of horizontally aligned balls represents a single stimulus.

ply put, exemplar models predict that concept are easy when
categories are homogeneous (the categories are homoge-
neous when the examples are very similar within categories),
whereas logical models predict that concepts are easy when
a simple rule can be used by subjects to categorize the ex-
amples. The five models in Table 2 are derived from these
two classes. The first model, called the raw similarity model
(RSM) computes the probability of categorizing each exam-
ple, assuming that the classification of an example is de-
termined by its similarity to the stored category exemplars
(Medin & Schaffer, 1978; Nosofsky, 1984; some of the prin-
ciples were developed by Luce, 1963 and Shepard, 1957).
It is a raw similarity choice model, including no parameters.
Exemplars form a context for computing similarities between
a stimulus presented to the subject and each category exem-
plar, the exemplars being the psychological representatives
of the corresponding concrete examples of a given concept.
A simple distance function was used with a city-block met-
ric (counting the number of different features between two
stimuli), n the number of dimensions composing the stimuli
(here, n = 3), and xia the value of stimulus i on dimension a.

di j = [
n

∑
a=1

|xia− x ja|] (1)

The following exponential decay function was used to re-
late stimulus similarity to psychological distance (Nosofsky,

1986; Shepard, 1987):

ηi j = e−di j (2)

Given the total similarity of a stimulus i to all exemplars in
categories X and Y , the probability of responding with cate-
gory X was computed by Luce’s choice rule:

P(X/i) =
(∑x∈X ηix)

(∑x∈X ηix)+(∑y∈Y ηiy)
(3)

To obtain a measure of the complexity of the concepts, a
single probability term was computed by taking the average
of all P(CorrectCategory/i). Nosofsky (1984) showed that
such a model gives a wrong prediction of the complexity of
Type II (ranked fifth instead of second in Table 2 ), mean-
ing that Type II is more complex than expected. As demon-
strated below, more accurate exemplar models need to allow
for selective attention processes (Nosofsky, 1984; Kruschke,
1992).

The second model, called General Context Model (GCM),
represents a more optimal context model because it imple-
ments several parameters, including (1) a sensitivity parame-
ter interpreted as an overall parameter for scaling distances in
the space, and (2) a parameter used for weighting the atten-
tion paid to each dimension (Nosofsky, 1984). The preced-
ing distance function is augmented with the scale parameter
c reflecting discriminability in the psychological space and
n = 3 attention weight parameters (one per dimension) with
0 ≤ wa ≤ 1, and ∑wa = 1 (n−1 = 3−1 were free to vary).

di j = c[
n

∑
a=1

wa|xia− x ja|] (4)

This model is notably a better predictor of the simplicity of
the Type II concept (Nosofsky, 1984). More powerful GCM
is possible, but no extra parameters such as the bias or γ were
necessary to obtain a correct ranking of the concept Types
here.

Other models can be likened to rule-based models in
which compression is used to reduce the total amount of in-
formation in a set of examples of a given category. In the
third model, developed by Feldman (2000) (called DNF-F
here, for Disjunctive Normal Form-Feldman), the subjec-
tive complexity of a set of positive examples is mapped to
the length of the shortest logically equivalent propositional
formula (called the minimal DNF). For instance, if three
Boolean dimensions are distinguished as follows: shape
(square, s, or not square, s′; the apostrophe denoting the
negation of the feature s), size (large, l, or not large, l′), and
color (blue, b, or not blue, b′), and a list of positive examples
is

1 = sl′b′, 2 = sl′b,
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a propositional formula made of disjunctions of features (put
in conjunctions) can be written

(s∧ l′∧b′)∨ (s∧ l′∧b)

where conjunctions and disjunctions are respectively repre-
sented by the symbols ∧ and ∨. The formula is more read-
able when written as follows: sl′b′∨ sl′b. This formula sim-
ply describes the list of positive examples in a Boolean form
that can be used for testing whether an example is positive or
not. This formula can however be rewritten more economi-
cally as sl′ (since the color feature is not relevant), without
losing any potential in testing examples. Because formulas
cannot be easily reduced when categories are heterogeneous,
the number of features in the shortest/compressed formula
(i.e., the minimal DNF) can be seen as a complexity index.
In contrast with exemplar models, in which categorization
seems associative and automatic, rule-based models seem to
operate on a more controlled process of abstraction of infor-
mation, a process maybe in part supported by language 2.
The complexity index was used here to get the ranking of all
Types.

The fourth model (called DT) is similar to the third, ex-
cept that the reduction technique is based on static decision
trees in which all decisions are made of identical orderings of
the relevant dimension values (see Bradmetz & Mathy, 2008;
Mathy & Bradmetz, 2004, or see Bryant, 1986 who gives
an account of similar reduction techniques using ordered bi-
nary decision diagrams). The fifth model (called DNF-KV)
roughly corresponds to Felman’s, except that the reduction
technique makes use of Karnaugh-Veitch diagrams (or equiv-
alent computerized techniques) to increase the compressibil-
ity of some concepts (Bradmetz & Mathy, 2008; Lafond et
al., 2007; Vigo, 2006). The ranking of all Types by all mod-
els is given in Table 2.

Note that in Table 2, Type VI is ranked by all models as the
most complex concept, although some differences between
other concepts are noticeable between models (the second
part of Table 2 shows the correlations between the rankings).
Type VI concepts are unanimously assessed as the most dif-
ficult ones, either because of the heterogeneity of categories
resulting from the pattern of dissimilarities between exam-
ples (for exemplar models) or because of the incompress-
ibility of the set of positive examples (in models assessing
minimal DNFs). GCM give different rankings for Types III,
IV and V, but these three Types are, however, generally con-
sidered of equal difficulty, as the patterns of probabilities are
quite close for these concepts. GCM consequently give a
ranking (1,2,4,4,4,6) similar to the two first rule-based mod-
els. Since the work of Shepard el al., the ranking often sum-
marized as I < II < (III, IV,V ) < V I has unanimously been
replicated in categorization tasks in which subjects made
more errors when the Type number was higher (the most fa-
mous replications are those by Feldman, 2000, and Nosofsky,

Gluck, et al., 1994).
However, the argument stressed in this paper is that learn-

ing strategies in classification tasks are not limited to com-
puting similarities or formulating rules on the basis of some
relevant features. Individuals might use other means of re-
ducing the complexity of these tasks, one of which is rela-
tional complexity developed below. The experiments which
follow aim at showing that some strategies based on rela-
tional complexity can be found in subjects when these tasks
are given several times in a row. We predict that the use
of relational complexity will distort the traditional pattern of
complexity of the Shepardian Types predicted and observed
in most studies. The goal here is specially to indicate the
considerable conceptual power of relational complexity by
reversing the classical prediction that Type VI is the most
difficult 3D Boolean concept.

Relational Complexity and Mutual Information
None of the categorization models presented above are

able to measure the relational information that might exist
between variables. Reference must be made here to the no-
tion of mutual information, which measures how features re-
late to each other. I will begin with an intuitive approach,
but a more complex and general way of measuring the relat-
edness between variables using mutual information is given
in the appendix. For the sake of simplicity, the notions of
relational complexity and mutual information are developed
using the exclusive disjunction (XOR) described in Figure 2,
because the Type VI concept is merely an extension of the
XOR function and its properties.

When examining the truth table of the XOR (Fig. 2), one
can notice that the output (i.e., the class) is positive (that is,
equal to one) whenever the input values are different (10 or
01). In this case, the relation (“different”) between the val-
ues is more informative than the values themselves. This re-
lational complexity is easily shown in a Bayesian network
(Fig. 2), which indicates that variables 1 and 2 are two im-
mediate causes of the variable “Class”3 (cf. Glymour, 2001;
Pearl, 2000). When more complex dimensions are used (cir-
cle vs square, and white vs black, instead of simple 0/1
codes), it is not possible to use differences between the val-
ues of different dimensions (e.g., a circle value cannot be
judged differently from a white value) . However, there is a

2 Exemplar models and rule-based models seem apparently op-
posed here, but they can be seen as complementary (Sloman, 1996)
and can be implemented in hybrid models (Anderson & Betz, 2001),
the hybrid position being supported by neurophysiological evidence
(Smith & Grossman, 2008).

3 A peculiar property of the XOR is that relational complexity is
maximal, which means that the three variables can be permuted and
any of them can act as the class, because as long as the other two
are different, the third is equal to one. Therefore, three Bayes nets
could be drawn from the truth table depicted in Fig. 2.
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Table 2
Ranking of the difficulty of the six classification types investigated by Shepard, Hovland, & Jenkins (1961) in different catego-
rization models, measures of agreement between rankings, and mutual information within each type

TYPE Correlations

1 2 3 4 5 6 b c d e
a- RSM 1 5 3 2 4 6 .600 .447 .447 .552
b- GCM 1 2 4 3 5 6 .894∗ .894∗ .828∗
c- DNF-F 1 2 4 4 4 6 1∗∗ .849∗
d- DT 1 2 4 4 4 6 .849∗
e- DNF-KV 1 2.5 2.5 4 5 6

Mut. In f o. 0 0 -.12 .06 .18 1

Note. RSM, raw similarity model, using city-block distance (Nosofsky, 1984); GCM, General Context Model using city-block distance,
attention weight parameter and sensitivity parameter (Nosofsky, 1984); DNF-F, with minimal disjunctive normal forms generated using
Feldman’s heuristics (cf., Feldman, 2000); DT, basic sequential and static Decision Tree model (cf., Bradmetz & Mathy, 2008; Mathy &
Bradmetz, 2004); DNF-KV, with disjunctive normal forms computed using the Karnaugh-Veitch diagrams or equivalent techniques (cf.,
Bradmetz & Mathy, 2008; Lafond et al., 2007; Vigo, 2006); Kendall’s τ correlations, computed on ranks; ∗∗ significant at the 0.01 level; ∗

significant at the 0.05 level; Mut. Info., Mutual information.

simple connection of relational information with rule-based
models. For instance, the learner can notice that if the first
variable is equal to 0, then the values of the category variable
and the second variable are correlated, whereas this relation
is reversed if the first variable is equal to 1. Concretely, if
examples are black, circles are positive and squares are neg-
ative, whereas if examples are white, a reverse pattern oc-
curs (i.e., circles are negative and squares are positive). The
learner might find the relational structure more obvious by
taking one stimulus as a referent object. Knowing that the
black circle is positive, the learner might notice that the ob-
ject which is neither black nor circle is also positive. Then,
the learner might quickly understand that all other objects are
negative. The rule would state something like “IF [black and
circle] OR [NOT black and NOT circle], THEN +, else -),
letting the learner memorize only two features. Again, the
values are not important anymore, except that at least one
stimulus must be taken as a referent object when dimensions
have values other than 0s or 1s.

Figure 1 shows a decision tree for categorizing the exam-
ples of a Type VI concept. Looking carefully at this tree, one
can see a series of oppositions between decisions, which re-
sults from the presence of relational information: the left and
right subtrees (from the second level to the leaves) are exactly
the same except that the categories are reversed (details are
given in the figure notes). Therefore, the preceding rule ( “IF
(black and circle) OR (NOT black and NOT circle), THEN
+, else -) which corretly applies to the big objects might be
reversed for the small objects ( “IF ... THEN -, else +). Type
VI is therefore made of two reversed XOR structures.

It is hypothesized here that individuals can use this rela-

tional information to devise easier strategies (i.e., using sim-
ple reversed decisions) to learn categories.

Mutual information simply quantifies the relatedness be-
tween two or more variables. In two dimensions, for ex-
ample, mutual information corresponds to the reduction in
the uncertainty about one variable due to the knowledge of
another variable (see Duda, Hart, & Stork, 2001, pp. 630-
632). In this case, mutual information would be maximal
(i.e., equal to 1) in the case of a perfect positive or negative
correlation between the two variables. In three dimensions,
mutual information is maximal (i.e., equal to 1) in the case
of a perfect positive or negative correlation between two vari-
ables holding the 3rd variable constant, which is the case for
the XOR structure (as demonstrated above). In four dimen-
sions, mutual information is maximal (i.e., equal to 1) in the
case there is an XOR structure between three variables when
the fourth variable is fixed, which is the case for the Type VI
structure (as demonstrated above). Therefore, Type VI also
entails mutual information equal to 1. The appendix pro-
vides some additional necessary details to compute mutual
information. When learning the Type VI concept, the learner
might notice that if the first input value is equal to one, the
category variable is equal to one if the other two input vari-
ables are correlated, whereas if the first input value is equal
to zero, the category variable is equal to one if the other two
input variables are inversely correlated. Again, this translates
in reversing decisions from one face of the cube to the other.

Table 2 gives the mutual information for each of the six
Shepardian classification types 4. I intend here to give a sim-
ple and clear picture of the effect of mutual information on

4 Note that mutual information can be negative. This happens
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Figure 1. The six classification types studied by Shepard, Hov-
land, & Jenkins, 1961. Note. Positive examples are shown as black
circles; negative examples are represented by empty vertices. There
are only six possible conceptual structures in three Boolean dimen-
sions with four positive examples. The other concepts are equiv-
alent by rotation or mirror reflection. The seventh cube shows a
set of possible stimuli using size, shape, and color as dimensions.
This is followed by an appropriate decision tree for categorizing the
examples in the Type VI concept. In the decision tree, the solid
lines represent (from top to bottom) the values Big, Square, and
White, respectively, whereas the dashed lines represent the values
Small, Circle, and Black. For instance, taking three successive left
branches (meaning: IF “Big, Square, and White”) leads to a leaf
representing a positive example (meaning: THEN “Category is +”);
taking a right branch then two left branches (meaning: IF “Small,
Square, and White”) leads to a leaf representing a negative example
(meaning: THEN “Category is -”). Note that the two subtrees (i.e.,
the two small decision trees following the first level) are equivalent
except for their leaves which are reversed (the positive leaves are on
the left for the first subtree whereas the positive leaves are on the
right for the second one). This means that once the classification
for the big examples is learned, subjects can apply a reversed clas-
sification for the small ones because of the presence of relational
information.

classification learning. To begin with a simple experiment,
let us oppose Type VI with another 3D concept which has
the smallest amount of positive mutual information, namely,
a Type IV concept. Type II concepts have no mutual infor-
mation, which would have made them suitable for a compari-
son, but because only two dimensions are relevant in this type
of concept, it cannot simply be compared to Type VI (idem
for Type I which has only one relevant dimension). Type V
is also suitable for comparison, but it might have too much
mutual information to be easily distinguished from Type VI.
The first two experiments therefore aim at showing a clear
difference between learning Type IV and Type VI in the long
run, whereas all Types will be compared in Experiment 3.

Shepard et al., 1961 showed that when subjects are given
successive problems of the same Type, more within-type
transfer can be attributed to Type VI than to Types III, IV, and
V (cf. Figure 6, p. 8). The problem is that 1) the individual
curves for Types III, IV and V were not presented separately

Figure 2. The exclusive disjunction: truth table and correspond-
ing Bayesian network. Note. The truth table includes two input
variables and one output variable. The output variable is called the
class or the category in the categorization literature. The Bayesian
network shows that input 1 and input 2 are independent. However,
in this network, input 1 is NOT conditionally independent of input
2, GIVEN the class. Effectively, the value of input 2 is equal to the
value of input 1 if the class is 0, whereas input 1 and input 2 are
inversely correlated if the class is 1. The same properties would fol-
low if we permuted the variables in the network. In other words, if
any two variables are the same, the third is equal to zero, whereas if
any two variables are different, the third is equal to one. Therefore,
one can correctly classify the examples of an XOR by considering
that the category is negative if the two input values are the same,
and positive if not.

(Type IV was the easiest of Types III, IV and V with respect
to the mean number of errors across the whole experiment,
so Type IV might have a within-type transfer comparable to
Type VI) and 2) the measures on Type IV were based on only
two subjects (because each of the six subjects were assigned
one of the three III, IV or V Types), so a complete counter-
balancing was not achieved (Type IV was only learned first
by one subject and last by the second, whereas Type VI was
learned by four subjects at four different positions).

Therefore, 1) Types III, VI and V need to be studied sepa-
rately in order to better equilibrate the comparison with Type
VI. For that matter, in Experiments 1 and 2, Type IV will
be individually compared to Type VI for some reasons de-
veloped below. In Experiment 3, the six Types will be stud-
ied individually but aggregated differently than in Shepard et
al.’s analysis. 2) Reliability and generalizability of the results
need to be tested with larger samples of subjects. As reported
by Shepard el al. (p. 9), the individual curves for Types III,
IV and V were quite erratic.

Also, the idea here is not to show that because of their
large amount of mutual information, Type VI concepts are
strictly easier than Type IV concepts, but that, in the long
term, individuals might find strategies to simplify the Type
VI categorization process. Hence, greater improvement in
learning rates are expected for participants learning Type VI
concepts than for those learning Type IV. It will turn out that
Type VI is eventually easier than Type IV in the long run.

when some information is redundant between variables
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The core hypothesis is that the computation of mutual in-
formation applies in the long run. Subjects would first use
basic strategies such as finding a set of relevant features
(or a combination of relevant features) to learn concepts.
With repetition, subjects would then switch to more power-
ful strategies consisting in using mutual information to lower
the complexity level of the task. Subjects would progres-
sively discover relationships between dimensions that make
the learning of concepts entailing high mutual information
easier.

This paper relates two mixed-design experiments in three-
dimensional Boolean concept learning, with one within-
subject factor (repetition of learning of similar concept
Types) and in which different concept Types were used as
a between-subject factor (Experiments 1 and 2). In Experi-
ment 1, subjects will learn repeatedly either a set of Type IV
concept problems in a row, or a set of Type VI problems, us-
ing different stimuli for each problem. In Experiment 2, sub-
jects will learn a set of identical Type IV concept problems
in a row (or a set of Type VI concepts), using the exact same
stimuli one problem after another, except that categories will
be reversed for each problem. Experiment 3 is a total within-
subject experiment in which subjects learned all 3D Boolean
concepts once a week for one month.

Experiment 1
Each subject was required to learn either a set of Type

IV concepts or a set of Type VI concepts during a one-hour
period. The successive concepts will be called “Problems”.
The set of stimuli was different from one problem to another
for a given subject. Only the Type of concept remained con-
stant within subjects. Repeated measures on a single concept
type were chosen so as to increase potential strategies based
on mutual information. Subjects were asked to learn as many
concepts as they could during the hour. No information was
disclosed beforehand concerning the similarities between the
successive problems.

Participants
The subjects were 20 Rutgers University students who re-

ceived course credit in exchange for their participation. The
subjects were randomly divided into two groups of equal size
(Type IV vs Type VI).

Stimuli
In each problem, the stimuli varied along three separable

binary dimensions (shape, color, and size). The two values
for each dimension were chosen randomly from the follow-
ing list (shape = triangle, square, or circle; color = blue, pink,
red, or green; size = small or big). Each combination of val-
ues formed a single unified object stimulus (e.g., a small red
square, a big blue circle). For each problem, the assignment

of categories to the stimuli was chosen at random to con-
form to a Type VI or Type IV. By taking all combinations of
values and all possible assignment of categories, 1152 Type
IV concepts and 288 Type VI concepts could be potentially
built. The stimuli were presented sequentially in blocks. In
each block of 2D = 23 = 8 stimuli (D = number of dimen-
sions), each stimulus appeared once in a random order, and
the first stimulus of each block was different from the last of
the previous block.

After a participant successfully learned the concept cor-
responding to the nth problem, a new set of stimuli (using
at least two different colors) was chosen for the (n + 1)th

problem (with exception of the classification Type which re-
mained constant for the whole experiment for a given partic-
ipant) and so on.

Procedure

The tasks were computer-driven. Participants learned to
sort stimulus objects using two keys, with successful learn-
ing encouraged by means of a progress bar. The stimulus
objects were presented one at a time in the upper part of the
computer screen. After each response, feedback indicating a
correct or incorrect classification was displayed at the bottom
of the screen for two seconds. Subjects first learned the sim-
plest concept in two dimensions in a short warm-up session
(e.g., if black then positive, if white then negative).

The subjects scored one point in the progress bar for each
correct response. A point was represented by an empty box
that was filled each time a correct response was given. An
incorrect response resulted in the loss of all points scored
so far in the progress bar. This means that a 100% correct-
classification criterion was adopted for each concept. Only
such a criterion could guarantee that the subjects would learn
all the objects equally well, regardless of their role in the
concept. Due to the progress bar, subjects could not avoid re-
sponding to the most difficult stimuli and could not progress
by classifying only the easy ones. To pace the learning pro-
cess, each response had to be given in less than eight seconds.
To make sure the subjects could also use the concept they had
just learned, the number of points in the progress bar was
equal to 4× 2D, that is four times the length of the training
set of stimuli (as in the first experiment of Shepard et al.,
1961). Subjects were therefore required to successively and
correctly categorize all stimuli on four consecutive blocks of
stimuli. The participants were rewarded with a digital image
(animals, fractals, etc.) when they succeeded. They could
continue (with a new problem) whenever they felt ready by
clicking on a button. The subjects were stopped to make sure
the experiment did not last more than one hour, including
presentation and debriefing.
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Instructions

The nature of the task was explained to the subjects: a
set of stimuli would be presented repeatedly; subjects would
have to learn their association with one of the two categories;
the computer would give feedback with no tricks of any
sort since the stimulus-response associations for one problem
would be stable; their goal would be to complete the progress
bar by giving successive correct responses; they would be
informed as to when the next problem would appear since
a next button would appear after they had completed the
progress bar). Subjects were told that they were assigned
10 different problems for a maximum of one hour. Nothing
was said about the heterogeneity of the categories in a given
problem. Subjects were told that they would certainly find
the task a bit difficult at first, but that they would certainly
make progress from one problem to another.

Results

In short, on average, the Type VI concepts were learned
in 8.1 blocks, as compared to 11.8 for the Type IV concepts.
A more detailed analysis of the error rate per block for each
problem is given in Figure 3 and Table 3 (the nth problem
corresponds to the nth concept learned during the hour). The
figure broadly indicates that the number of problems had an
effect on learning for both concepts (the statistics for each
curve are detailed below). The maximum number of prob-
lems completed in one hour was 15 (one subject only). Since
the number of subjects decreased as the number of problems
increased owing to time limitations, a limit of ten problems
was chosen to keep a sample size above 10 subjects.

The overall comparison of the two learning curves re-
ported in Figure 3 seems to support the hypothesis that, in
the long run, subjects can benefit from the mutual infor-
mation inherent in Type VI concepts. First, subjects av-
eraged more errors during the first problem when learning
Type VI (M = 0.31 –error rate–, SD = 0.054) than when
learning Type IV (M = 0.26, SD = 0.043), before reaching
the learning criterion (t(18) = 2.53, η2 = .262, p < .02).
This result has been unanimously confirmed in the earlier
literature: Type VI is the hardest concept for subjects to
learn. However, this trend changed rapidly in the present
data: Type VI became easier than Type IV in all remaining
problems. Considering the error rates for the first ten prob-
lems, Type VI (M = 0.098, SD = 0.099) turned out to be sim-
pler than Type IV (M = 0.180, SD = 0.094); t(172) =−5.7,
η2 = .162, p < .001. This contradicts most models, which
do not take relational information between dimensions into
account. Note that this difference in error rates was even
higher when the number of problems was used as a covariate;
F(1,172) = 42.9, η2 = .199, p < .001.

A better way to show that the mean error rate per block
decreases more in the Type VI condition as the number of

Figure 3. Mean error rate per block for subjects to reach criterion
for the first 10 problems. Note. Error bars indicate +/- one standard
error.

problems increases would be to compare the slopes of the
regression lines that fit the two curves. Given that the slopes
approached an exponential decay function, the natural log-
arithm of the number of errors was taken in order to mini-
mize the sum of squares when fitting the error rates to the
regression lines (the natural logarithm merely flattens the
curves). A regression analysis was then run using the number
of problems and two indicator variables that coded the types
and the interaction between the problems and the types re-
spectively. This technique –equivalent to an ANCOVA using
problems as a covariate– allows one to test the null hypoth-
esis of coincidence and the null hypothesis of parallelism of
the two regression lines. Coincidence could hide either dif-
ferences in parallelism or differences in intercepts. The result
showed that the lines were not coincident (F(2,171) = 24.2,
η2 = .081, p < .001). This hypothesis being rejected, the
hypothesis of parallelism could be tested. Again, the test al-
lowed us to reject parallelism (F(1,171) = 4.6, η2 = .015,
p < .05). This means that the slope was significantly greater
downward for Type VI than for Type IV.

Experiment 2

In experiment 1, mnemonic strategies using numerical re-
lationships might have been used by subjects. For instance,
subjects might have taken a positive stimulus as a reference
and computed the number of common features between this
stimulus and another stimulus to determine the membership
of the latter. For instance, let us consider the 010 stimulus at
the lower left of the front face of the Type IV and the Type
VI cubes in Fig 1. In the Type VI concept, one feature in
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Table 3
Mean error rate per block in 10 successive problems of the same Type (Type IV or Type VI) in Experiment 1

Problem Number
1 2 3 4 5 6 7 8 9 10

TYPE IV
Error rate .255 .237 .222 .118 .146 .141 .172 .163 .124 .117

SD(Error rate) .054 .091 .160 .035 .062 .057 .094 .064 .066 .052

TYPE VI
Error rate .310 .171 .078 .061 .047 .031 .056 .051 .046 .024

SD(Error rate) .043 .083 .045 .052 .044 .030 .055 .042 .067 .016

Note. The mean error rate is the mean number of incorrect responses per block computed for a given problem, divided by the number of
examples in a block (8).

common with the 010 stimulus signals a positive stimulus; in
concept IV, two features in common with 010 signals a pos-
itive stimulus. Such numeric information can be used and
can lead to very short rules in Type IV and VI, but most of
the time, it would lead to unproductive strategies when learn-
ing Boolean concepts (For instance, computing the number
of common features in a Type I concept would be counter-
productive). Shepard et al. had independent judges rate the
amount of unnecessary complexity in the rules verbalized by
the subjects in their first experiment which tended to prove
that, even if the greatest reduction of complexity was ob-
served for Type VI across problems, the subjects generally
did not used such numerical rules since the mean rating of
unnecessary complexity in the rules was quite high for Types
IV and VI and higher in Type VI. In their second experi-
ment, none of the subjects discovered the numerical rule in
Type VI. Still, the use of numeric strategies by certain sub-
jects might surrogate the rules and their complexity defined
by computational models. This experiment aims at enhanc-
ing and suppressing such numerical facilitation. To antic-
ipate, in comparison with the compound condition used in
Experiment 1, a spatial condition enhancing the numerical
facilitation and a narrative condition suppressing the numer-
ical facilitation will be assigned to subjects (this is detailed
below).

Also, the Type VI concept might have been found easier
by subjects across problems, because there were fewer varia-
tions in this kind of problems, in part due to the limitation of
the number of values in the size dimension. On one hand, the
focus of attention on the size dimension could have favored
the Type IV problem. For instance, using size as a relevant
dimension straight away in a Type IV problem guaranteed
6 correct responses, because there are always three positive
examples for a particular size and three negative for the other
size value for any rotation. Therefore, perhaps the learner
only needed to memorize one exception per size value. On
the contrary, the size dimension alone would only give four

correct responses in a Type VI problem if the subject had
tried to classify the stimuli according to their size. This pos-
sibility might have interfered with the results but could not
explain per se the greater ease of learning in Type VI prob-
lems.

But on the other hand, in type VI problems, two stimuli of
the same size and shape (but different in color) were neces-
sarily in different categories. Subjects could then use some
analogies between problems (for instance, for the small ob-
jects of a given shape, subjects only had to find which colors
matched the categories). Thanks to the effect of mutual infor-
mation, the subjects could perfectly determine the structure
of the entire category from the feedback obtained from the
first stimulus of a problem (from the second problem on).
On the contrary, in Type IV concepts, the presentation and
feedback for the first stimulus was not sufficiently informa-
tive to predict all the next category responses. At least three
or four stimuli were necessary to induce the correct rule us-
ing a rule analog to the one used in the previous problem.
The same problem arose in Experiment 1 by Shepard et al.,
because the five consecutive problems were associated with
five set of different stimuli, but only two values were used per
dimension. Using more dimensions and more dimension val-
ues would not solve the problem as the same strategies could
be applied by the subjects once the irrelevant dimensions are
identified. To address this issue, Experiment 2 was designed
to remove this factor by using identical stimuli across prob-
lems.

A last problem in Experiment 1 might be due to the use
of a warm-up concept, which might have made the subjects
search for rules at the beginning of the first problem, which
is more incompatible with Type VI. This could explain its
greater difficulty during the first problem.

Participants

The subjects were 84 University of Franche-Comté stu-
dents who received course credit in exchange for their par-
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ticipation. The subjects were randomly assigned to 6 groups
of 14 subjects.

Stimuli

In this experiment, the learning of Type IV and Type VI
classifications was investigated in three different stimulus
conditions. Stimulus conditions varied according to the de-
gree of relationship that could be defined between the stim-
uli (cf. Fig. 4). In the first condition (Spatial condition),
the subjects were shown three similar objects (three black
balls) placed above or under a line. Boolean values across
dimensions were up versus down (instead of the black/white
opposition shown in Table 1). This condition highlighted the
correlations between dimensions, as noted in section “Sim-
plicity of Relational Concepts: XOR and Type VI” and in
Table 1. Mutual information was enhanced by the spatial
position of the balls around the line. In this case, subjects
could devise numeric or spatial strategies specially efficient
in Type VI. For instance, in the Type VI concept, the subjects
could notice that the 2nd and the 3rd balls were in different
locations whenever the 1st ball was under the line, whereas
the balls were in the same location (all above the line or all
under) whenever the 1st ball was above the line. This also
created a situation in which only the stimulus was positive
whenever the number of balls above the line was odd in Type
VI concepts. The numeric and spatial features could also be
used, to a lesser extent in Type IV concepts.

In the second condition (Narrative condition), the stimuli
(cf. Fig. 4) were built in order to allow a narration of the dif-
ferent events depicted in the stimuli. Totally different dimen-
sions were used to reduce commonalities between dimension
values. The first dimension represented two different seasons
(summer vs winter). Several features were associated with
each season (green grass, blue sky and sun vs snow, gray sky
and clouds). The second dimension represented what could
be offered by a boy to the girl protagonist (a cake vs a bou-
quet of flowers). The third dimension was the girl protagonist
(Mary, in a white dress vs Lucy, in a pink dress). In this con-
dition, it was possible for subjects to elaborate little scenarios
to devise mnemonic strategies (such as: Mary likes flowers
in summer and cakes in winter, etc.). Subjects were given the
list of the dimensions which were subject to variations at the
beginning of the experiment. This condition was expected to
suppress some numerical strategies such as those that were
more obvious in the Spatial condition (although computing
the number of commonalities between successive pictures
was still possible). In the third condition (Compound con-
dition), stimuli similar to those used in Experiment 1 were
built, in order to allow some comparison.

Figure 4. Sample of stimuli used in Exp 2. Note. In each row, the
two stimuli are opposed on each of their varying dimensions.

Procedure

Each subject was given a series of 10 similar concepts.
The experiment was designed to last one hour, including pre-
sentation and debriefing. The subjects were not required to
complete the 10 problems, but were asked to complete the
maximum number of problems in the time that was allocated
to the experiment. Half of the subjects was assigned to a
series of Type VI concepts, the other half to Type IV. Con-
trary to experiment 1, there were no variations in the stimu-
lus features between problems for a given subject. The same
stimuli were given problem after problem. The only variation
between problems was the stimulus-category mapping. Cat-
egory membership was simply reversed from one problem to
the other. Hence, whenever the problem number was even,
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the positive examples of the previous problem became nega-
tive (and vice-versa for the negative examples). The subjects
simply encountered the same category structure for every two
problems. The goal was to measure the ability of the subjects
to reverse the category membership across problems in a sin-
gle concept Type.

In the three conditions, for each subject, a set of positive
examples was randomly chosen for the first problem to con-
form to a Type IV or Type VI structure. The positive exam-
ples were then memorized by the program and successively
reversed from one problem to the next. In the compound con-
dition, for each subject, the stimulus features were randomly
drawn (from a set of features equivalent to the one used in
Experiment 1) at the beginning of the experiment and were
then maintained constant throughout the task.

There was no warm-up session in this experiment, to avoid
orienting subjects to search for simple rules. Otherwise, the
procedure was identical to that of Experiment 1 (feedback
was given for 2 seconds, a progress bar indicated the number
of successive correct responses, each stimulus appeared once
in a block, and subjects were required to correctly categorize
all stimuli on four consecutive blocks).

Results

Figure 5 shows the learning curves in the Spatial, Com-
pound and Narrative conditions (frames A, B and C) when the
error rate per block was measured. When the first problem
was analyzed separately, a Condition (Spatial, Compound,
Narrative) by Type (IV vs VI) ANOVA found only a signifi-
cant effect of Condition, F(2,78) = 5.93, p = .004, η2

p = .13,
in which means equal to .28 (sd = .07), .32 (sd = .05) and
.34 (sd = .07) respectively. During the first problem, Type
VI was found more difficult than Type IV (t(26) = 2.54,
p < .017, η2 = .20) only in the Compound condition. This
result matches our observation in the first experiment, in
which stimuli were also compound. In the other two other
conditions, no difference between Type IV and Type VI was
observed during the first problem.

Because the overall improvement over problems was not
of crucial interest in our study, the data were collapsed across
the ten problems (cf. Fig. 5.D). Then, another Condition
(Spatial, Compound, Narrative) by Type (IV vs VI) ANOVA
was run. This time, a main effect of Type was observed (Type
VI being easier, F(1,631) = 25.95, p < .001, η2

p = .04), a
main effect of Condition (Spatial < Compound < Narrative,
F(1,631) = 22.9, p < .001, η2

p = .07; the post hoc pairwise
comparisons between the Spatial, Compound and Narrative
conditions were all significant using the Bonferroni adjust-
ment), as well as a significant interaction (F(1,631) = 4.35,
p < .05, η2

p = .01). The interaction indicated a greater dis-
crepancy between Type VI and Type IV in the Narrative con-
dition.

Table 4 shows the means and standard deviations of these
collapsed results. Overall, the odds ratios (each ratio was
computed between the odds of error rate in Type IV and the
odds of error rate in Type VI in a given condition) were
1.3, 1.2, and 1.8 respectively, in the Spatial, Compound,
and Narrative conditions. For instance, the proportion of er-
rors was 1.3 times larger ([.127/.873]/[.103/.897] = 1.3) in
Type IV than in Type VI in the Spatial condition. Overall,
the Spatial condition and the Narrative condition were ben-
eficial and detrimental to learning respectively. When tak-
ing a closer look at the Spatial condition compared to the
Compound condition, there is a significant difference be-
tween the Spatial and Compound conditions within each rule
type (t(255) = 2.73, p < .007, for Type VI; t(255) = 2.83,
p < .005, for Type IV). These differences appear to be of
the same magnitude because there is no statistical interaction
between Type and Condition, when the analysis is restricted
to the Spatial and Compound treatments. Because the Spa-
tial condition facilitated learning of both Types, numerical
biases can then be considered orthogonal to mutual infor-
mation. On the contrary, the Narrative condition (compared
to the Compound condition) hindered learning of Types IV
(t(162) = 4.02, p < .001) more than learning of Type VI
(t(185) = .45, NS). Hence, the Narrative condition increased
the disparity between the two Types, which is confirmed by
an interaction effet (F(1,347) = 6.22, p = .013, η2

p = .02).
In other words, the easiness of Type VI in the Narrative con-
dition might be due to the use of pure (i.e., non numerical)
relational information. To conclude, mutual information was
beneficial for Type VI rules across a wide range of stimulus
types.

Analysis of previous data
(Experiment 3)

The following is an analysis of an experiment which dif-
fered in several aspects from the two preceding ones. This
experiment was carried out by Mathy (2002). Fourteen sub-
jects were asked to learn the 13 three-dimensional Boolean
concepts once a week over a period of four weeks (for a to-
tal of 4× 13 = 52 concepts). Each week, the concepts were
given in random order. The first concept of the (n+1)th week
was not identical to the last concept of the nth week. The
experimental setting was similar to the one used in Experi-
ment 1, except that the learning criterion was based on two
consecutive blocks of successive correct responses instead
of four. Stimuli features were randomly chosen for each of
the 52 concepts which were learned. The stimuli were dif-
ferent from the ones used in Experiment 1: stimuli features
were oval, triangular, or square shapes; shapes were shown
in pink, green, blue or red colors; the last dimension was an
circle vs diamond frame around the central shape. Basically,
the frame dimension replaced the size dimension used in Ex-
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Figure 5. Mean error rate over problems for Type IV and Type VI concepts, in three different stimulus conditions. Note. Error bars indicate
+/- one standard error.

Table 4
Mean error rate (and SDs) in 10 successive problems of the same Type (Type IV or Type VI) in three conditions (Spatial,
Compound, Narrative), measured in Experiment 2.

Spatial Compound Narrative
Type IV 0.127 0.163 0.232

(0.099) (0.097 (0.112)

Type VI 0.103 0.138 0.146
(0.094) (0.112) (0.122)

Odds ratio 1.3 1.2 1.8

Note. The error rate was computed across all the problems performed by a subject. The odds ratio for the Spatial condition is:
[.127/(1-.127)]/[.103/(1-.103)] = 1.3; The Total column cannot be computed from the mean of the three precedent columns without weight
adjustment, because the number of blocks or problems were different in the conditions
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periment 1. This experiment differs from the two preceding
ones in that there were no successive similar concept Types,
so the subjects could not devise strategies which applied to a
single Type of concept throughout the experiment.

Only a subset of the concepts of interest are analyzed
next. The data was pooled according to whether the con-
cepts were characterized by null information (Types I and
II) or positive mutual information (Types IV, V and VI). The
number of blocks was subjected to a logarithmic transfor-
mation to limit the positive skewness of the distributions.
The results were then plotted as if an ANCOVA was about
to be computed, with week as a covariate. The reason is
that before conducting an ANCOVA, the assumption of equal
slopes needs to be tested first. The ANCOVA effectively
assumes that there is no interaction between the covariate
and treatments. The results plotted in Figure 6 indicate
that the covariate (week/problem number) by the treatment
(null vs positive mutual information) interaction is signifi-
cant (F(1,172) = 7.2, p = .008), meaning that the regression
slopes are not equal. The study of the effect of negative mu-
tual information goes beyond this study, but it can be noted
that Type III, characterized by negative mutual information
(hence entailing some causality between features) showed a
slope in between. In conclusion, the subject’s performance in
categorization tasks entailing mutual information decreased
with time and repetition, even when learning was disrupted
by intercalated concepts of a different nature.

It could be argued that in this experiment, progression
might simply be correlated to concept difficulty, with a
greater progression margin for complex Types and a floor
effect for others (effectively, the partial correlation between
repetition and mutual information controlling for concept
complexity was not significant in this data). However, when
the previous experiments are taken into account, this exper-
iment gives some extra information on the putative effect of
mutual information on learning.

Discussion

The present results suggest that relational information in
concepts is relevant to learning a sequence of successive
problems of the same type. Our results simply show a corre-
lation between performance in classification and the presence
of relational information between input variables in Boolean
concepts (Experiment 3). In particular, the two first experi-
ments showed that because Type VI problems entail a large
amount of mutual information, Type VI can be easier to learn
than Type IV problems, in the long run. In the present ex-
periments, one may have noted that the number of stimuli
(8) and the number of dimensions (3) were constant. This
explains why increasing the amount of information that can
be transmitted between variables in some concepts enabled
greater performance in our study, whereas in other studies on

Figure 6. Logarithm of the number of blocks to reach the cri-
terion against treatment (Null vs positive mutual information) and
covariate (problem number, or week). Note. Concepts entailing null
mutual information are Types I and II. Concepts entailing positive
mutual information are Types IV, V, and VI.

absolute judgments (Miller, 1956), the amount of informa-
tion that can be transmitted by subjects increases initially as
the number of stimuli is increased, but gradually levels off
because of the limitation of the channel capacity in subjects.

The present study confirms other research which has
shown that within-category correlations can be learned dur-
ing classification tasks, even incidentally (Giguère, Lacroix,
& Larochelle, 2007). Relational information can be mea-
sured easily by mutual information, which is a very conve-
nient non-metric tool for computing the amount of informa-
tion shared by variables in multivariate distributions. Using
repeated measures, the present study probes into the long-
term effect of mutual information, and points out that learn-
ing several classifications of the same Type in succession has
a substantial impact on how concepts are learned. By com-
paring Type VI concepts (entailing a maximal amount of pos-
itive mutual information) with Type IV concepts (entailing a
minimal amount of positive mutual information), the present
results show that Type VI concepts gradually become more
learnable than Type IV ones. For instance, from the second
problem on, the error rate for Type VI was lower than for
Type IV in Experiments 1 and 2. These results suggest that
the categorization models presented in the introduction needs
to be refined to take the effect of relational information into
account. This work emphasizes the peculiar status of Type
VI concepts, which has also been noted in different research
on inductive biases and cultural evolution (Griffiths, Chris-
tian, & Kalish, 2008; Griffiths, Kalish, & Lewandowsky,
2008; the authors have shown that in transmission chains,
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in which individuals pass information to others, people con-
verge more often than expected towards Type VI).

A possible interpretation of the greater difficulty with
Type VI concepts on the first categorization task is that sub-
jects could have spent time looking for rules or regularities
and resisted having to memorize all examples. This might
apply to any experiments in which Type VI was found to be
more difficult. Effectively, subjects might use natural rule-
like strategy, which, in general, is more compatible with any
other Type, and which could explain greater performance for
Type IV during the first problem in our experiments. How-
ever, this alone would not explain why performance on Type
VI concepts increases on the next problems. If concepts were
learned via a process akin to overt memorization on the next
problems, learning of Type VI would remain more difficult
than Type IV since Type IV could still benefit from more
abstraction. As previously shown in the literature on concept
learning, there would be no difference between classification
Types if nothing but rote memorization were used by sub-
jects. The greater simplicity of Type VI therefore calls for
another explanation. Also, there is no reason why mutual
information could not be applied after a couple of blocks
during the first exposure, rather than after a couple of suc-
cessive problems. Therefore, a more rapid learning of Type
VI during the first trial (observed in Experiment 2) is not
incompatible with the explanation based on mutual informa-
tion suggested here.

Relations are of great interest in processes such as reason-
ing with polyadic predicates like “x is taller than y” (Good-
win & Johnson-Laird, 2005), making higher order inferences
such as “x loves y more than z does” (Goodwin & Johnson-
Laird, 2006), analogie formation (Gentner, 2006), and also
in categorization (Gentner & Kurtz, 2005). The present
study addresses an important issue in categorization model-
ing: Most models focus on single metrics. So far, no model
in psychology has been designed to predict the use of re-
lational complexity in classification learning in connection
with any of the classical rule-based or similarity-based mod-
els. Halford and colleagues (Halford, Wilson, & Phillips,
1998; Halford, Cowan, & Andrews, 2007) also suggest the
use of relational metrics, although the relational complexity
defined by these authors is a bit different and should rather be
called “interactional” because it refers to the minimal dimen-
sionality to which a representation can be reduced without
losing the information necessary for a solution (for instance,
the XOR corresponds to a first-order interaction, because the
two input values are necessary for the categorization process
of all stimuli). This notion applies here: the Type VI concept
can be described as a second-order interaction, noticeable in
the symmetries in the decision tree in Figure 1. Hence, not
only does mutual information connect with relational com-
plexity, Bayesian networks, and decision processes as ex-
plained in the introduction, but also easily with interactional

complexity.
This allows us to propose the idea of investigating, com-

bining and integrating different metrics in categorization
modeling. Some attempts have already been made to produce
hybrid models using both rule-based metrics and similarity-
based metrics (Anderson & Betz, 2001; Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Nosofsky, Palmeri, &
McKinley, 1994; Smith & Sloman, 1994). The present study
suggests that more effort should be applied to including re-
lational metrics. A key point in predicting future results is
the applicability of the different strategies: some strategies
might be used quickly (e.g., attempting to use single fea-
tures), whereas others might require more time (i.e, finding
relations, correlations, or causal connections). Also, poten-
tial transitions between strategies need to be examined in
greater detail in the future.

A much more delicate point concerns the differential com-
patibility of models with relational information. The present
results tend to argue in favor of categorization models with
metrics based on abstraction and compression. An informa-
tion reduction process could effectively explain how multiple
strategies might occur and result in transfer effects. For in-
stance, a minimal disjunctive formula such as xy + x′y′ = 1
(i.e., IF (x and y) OR (x′ and y′) THEN the example is pos-
itive), which entails some mutual information, can easily be
reduced to (X = Y ) = 1 (i.e., if the input dimensions are
the same, then the example is positive). The present results
do not provide a definite answer, but it is worth mentioning
that relational information cannot be easily accounted for in
exemplar-based models, as xy and x′y′ are maximally dissim-
ilar. This study calls for a more complete analysis of within-
type transfer on a much larger class of concepts such as the
Feldman’s family set (Feldman, 2003). An extended data
set would provide better evidence for a subject’s reliance on
mutual information.
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en mémoire de travail. Unpublished doctoral dissertation, Un-
published doctoral dissertation, Université de Reims, France.
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APPENDIX

Entropy, joint entropy, and conditional entropy

Before describing mutual information, some of the main
concepts behind information theory should be examined. In-
formation theory determines the quantity of data a set of mes-
sages contains by computing basic probabilities. This quan-
tity called entropy (or information content) corresponds to
the amount of uncertainty one has about a set of messages.
For example, someone knows whether a card is black or red.
Because the probability of guessing the color is .5, the com-
munication of a single piece of information that is communi-
cated (e.g., black) is −log2(.5) = 1, also called the surprisal.
Therefore, a single message (black or red) corresponds to
1 bit of information. The uncertainty one has about a set of
possible messages (e.g., black or red) is called the entropy H.
It is determined by computing the expected value of the sur-
prisal of all possible pieces of information a message might
contain. Given:

H(X) =−∑
i

pilog2(pi) (5)

we have: H(color) = −p(red)log2(p(red)) −
p(black)log2(p(black)) =−( 1

2 )(−1)−( 1
2 )(−1) = .5+ .5 =

1. H corresponds to the number of binary questions one
would need to ask to retrieve the content of a message. Here
the question would simply be: Is the card red or black?

Let us imagine someone knows whether a card is spades,
hearts, diamonds or clubs. In this case, H(suit) = −∑ .25×
log2(.25) = 2. Effectively, two binary questions are neces-
sary to discover the suit of a card (Is the card red or black?
Then, if the color is black: Is the card Spades or Clubs?).
This also means that for coding 4 symbols, only two binary
variables are necessary (00 = hearts, 01 = diamonds, 10 =
clubs, and 11 = spades).

Take the example of the XOR structure shown in Fig. 2.
Each column is a variable that can take 0 or 1 values (the
variable can be used to send messages composed of a single

0 or 1). If these columns are renamed X , Y , and Z:

XOR =


X Y Z
0 0 0
0 1 1
1 0 1
1 1 0


The entropy H of each of these variables is 1 bit because

1 bit of information is needed to store or communicate one
of the two equally probable values (0 or 1) that can be taken
by the variable. Given:

H(X) =−
m

∑
i−1

pilog2(pi) = (6)

we have: H = −p(0)log2(p(0)) − p(1)log2(p(1)) =
−( 1

2 )(−1)− ( 1
2 )(−1) = .5+ .5 = 1.

It is also possible to compute the joint entropy or the con-
ditional entropy of variables. The joint entropy is simply the
entropy of the set of messages that can created be using sev-
eral variables. Again, using two binary variables, it is pos-
sible to form 4 different messages {00,01,10,11}. In this
case, where variables are independent, the joint entropy (the
entropy of the conjunction of variables) is simply the sum
of their individual entropies: H(X ,Y ) = H(X)+ H(Y ) = 2,
the comma symbol between X and Y indicating the conjunc-
tion between X and Y . The conditional entropy H(X/Y ) (the
slash symbol indicating the conditional statement “know-
ing”) is a measure of the quantity of information in one vari-
able holding a second constant. For instance H(X/Y ) = 1,
because holding Y constant leaves 1 bit of uncertainty. For
instance, for Y = 1, X is either 0 or 1; idem for Y = 0.

Mutual information
Mutual information is a measure of the quantity of infor-

mation one can obtain on a given set of variables by observ-
ing another variable. The mutual information between two
variables is:

I(X ;Y ) = H(X)−H(X |Y ) (7)

With :
H(X |Y ) = H(X ,Y )−H(Y ) (8)

The variables are separated by semicolons in the formula to
avoid confusion with conjunctions. For any pair of variables
in the XOR truth table (e.g., X and Y ), we get null mu-
tual information. For instance: I(X ;Y ) = H(X)−H(X |Y ) =
H(X)− (H(X ,Y )−H(Y )) = 1− (2− 1) = 0, meaning that
these two variables are independent. Hence, taken by pairs,
X , Y and Z are independent.

Even if it looks much more complicated, the computation
of mutual information is easily extendable to an arbitrary
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number of dimensions using alternating plus and minus signs
over all subsets of variables. For three variables:

I(X ;Y ;Z) = H(X ,Y )+H(X ,Z)+H(Y,Z)+
−H(X)−H(Y )−H(Z)−H(X ,Y,Z) (9)

Computed for the three variables in the XOR truth table,

we have:
I(X ;Y ;Z) = 2+2+2−1−1−1−2 = 1, which corresponds
to the maximal amount of mutual information with three
Boolean variables. As explained throughout the article, this
means that it is possible to know the value of a given variable
given the relationship between the two others (or vice-versa).


