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We report two experiments suggesting that development of rule
use in children can be predicted by applying metrics of complexity
from studies of rule-based category learning in adults. In Experi-
ment 1, 124 3- to 5-year-olds completed three new rule-use tasks.
The tasks featured similar instructions but varied in the complexity
of the rule structures that could be abstracted from the instruc-
tions. This measure of complexity predicted children’s difficulty
with the tasks. Children also completed a version of the Advanced
Dimensional Change Card Sorting task. Although this task featured
quite different instructions from those in our ‘‘complex’’ task,
performance on these two tasks was correlated, as predicted by
the rule-based category approach. Experiment 2 predicted findings
of the relative difficulty of the three new tasks in 36 5-year-olds
and also showed that response times varied with rule structure
complexity. Together, these findings suggest that children’s rule
use depends on processes also involved in rule-based category
learning. The findings likewise suggest that the development of
rule use during childhood is protracted, and the findings bolster
claims that some of children’s difficulty in rule use stems from
limits in their ability to represent complex rule structures.
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Introduction

Many rules guide people’s behavior in everyday life. These include rules of courtesy and politeness
(e.g., when asking for something, say ‘‘please’’), of law (e.g., stop on red, go on green), of safety (e.g., do
not touch a hot stove), and of games and sports (e.g., collect $200 when you pass ‘‘go’’). Rule systems
often change across contexts, so people must often override or disregard previously relevant rules and
flexibly adopt current ones.

Children often have difficulty in using simple rules, and the ability to successfully follow rules
improves with age. For example, preschool-aged children have difficulty with a variety of tasks in
which using rules requires avoiding dominant response tendencies (Zelazo & Carlson, 2012). This
can be observed in the day–night task, where children have difficulty in following rules requiring
them to say ‘‘night’’ to pictures showing the sun and ‘‘day’’ to pictures showing the moon
(Diamond, Kirkham, & Amso, 2002; Gerstadt, Hong, & Diamond, 1994); this difficulty presumably
arises because these rules conflict with children’s more dominant tendencies to say ‘‘day’’ for the
sun and ‘‘moon’’ for the night. Another example is children’s performance on the Dimensional
Change Card Sort (DCCS) task. In this task, children first follow one sorting rule to sort cards accord-
ing to one of two dimensions (e.g., color) but then switch rules and sort according to a second
dimension (e.g., shape). Whereas 3-year-olds mostly fail to make this switch and continue sorting
using the first rule, 4- and 5-year-olds succeed in switching (Frye, Zelazo, & Palfai, 1995; Hanania
& Smith, 2009; van Bers, Visser, van Schijndel, Mandell, & Raijmakers, 2011; Zelazo, Frye, &
Rapus, 1996; Zelazo, Müller, Frye, & Marcovitch, 2003a). However, difficulties remain for these older
children in the advanced version of the task, which requires switching between the shape and color
rules on consecutive trials (Carlson, 2005; Chevalier & Blaye, 2009; Hongwanishkul, Happaney, Lee,
& Zelazo, 2005). Similar difficulties even arise for adults if we consider their response times
(Diamond & Kirkham, 2005).
Rule-based category learning

In the current article, we suggest that insight into the development of rule use in children can be
gained from an existing literature on rule-based category learning. This field has mostly sought to
explain adults’ difficulties in learning various artificial rule-based categories (for the seminal studies,
see Shepard, Hovland, & Jenkins, 1961, and Medin & Schaffer, 1978; for more recent important devel-
opments, see Nosofsky, Gluck, Palmeri, McKinley, & Gauthier, 1994, and Rehder & Hoffman, 2005).
Some articles have examined rule-based category learning in children as well (e.g., Minda,
Desroches, & Church, 2008).

To explain how rule-based categories are learned and represented, the field has developed a for-
malism based on Boolean complexity minimization. This formalism allows rule-based categories to
be represented using logical disjunctive normal formulas such as ‘‘a and b OR c.’’ ‘‘Elephant = huge ani-
mal with a trunk with large ears (if African) OR small ears (if Indian)’’ and ‘‘my favorite pet = white cat OR
black dog’’ are examples of disjunctive normal forms. A disjunction is a logical formula that expresses
categories for which objects do not resemble one another, which automatically increases the complex-
ity of a category (Mathy, Haladjian, Laurent, & Goldstone, 2013). Nearly all studies on rule-based cat-
egory learning have focused on complex rule-based categories with a minimum of three dimensions.
This includes both more recent studies in this field (Bradmetz & Mathy, 2008; Feldman, 2000, 2003b;
Lafond, Lacouture, & Mineau, 2007; Minda et al., 2008; Vigo, 2006) and older studies (Bourne, 1970;
Bruner, Goodnow, & Austin, 1956; Hovland, 1966; Levine, 1966; Shepard et al., 1961). Because we aim
to apply this work to rule use in preschoolers, we instead focus on two-dimensional artificial catego-
ries that are used to classify two-dimensional stimuli such as ‘‘red square’’ and ‘‘dark flower.’’

Such formulas are thought to represent the product of an abstraction process. They allow people to
build rule-based categories from simple and independent features. Consider a set of four kinds of
objects varying only in color and shape: dark flower, light flower, dark butterfly, and light butterfly.
For this set, one simple rule-based category is ‘‘dark,’’ which is a minimization of the ‘‘dark flower, dark
butterfly’’ set of objects. This category can be used to classify the four objects into two groups by
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considering only one dimension, color (i.e., is the item dark or not?), without considering how this
dimension interacts with the other dimension, shape (see Fig. 1 for a depiction of this simple rule
structure). Hence, using this category is more efficient than achieving the same classification using
a separate categorization rule for each object (i.e., If dark flower, then Category A, else Category B; If
dark butterfly, then Category A, else Category B), a strategy that requires rote memorization and
considering both dimensions without any kind of abstraction.
Fig. 1. The three rule-use tasks (Simple, Intermediate, and Complex) and DCCS (Frye, Zelazo, & Palfai, 1995) used in Experiment
1, described by blocks. Rule complexity is represented by decision trees.
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A more complex category structure, applying to the same set of objects, is ‘‘dark flower OR butterfly’’
(it can also be represented as ‘‘NOT light flower’’ or as ‘‘dark OR butterfly’’). This category can be viewed
as the minimization of the category set ‘‘dark flower, dark butterfly, white butterfly’’ and allows these
objects to be classified into a separate category from objects in the set ‘‘light flower.’’ As can be seen
in Fig. 1, using this rule-based category allows half of the objects to be classified by shape alone (but-
terflies), whereas the other half are classified on both the dimensions of shape and color (flowers). This
rule structure involves a ‘‘partial interaction’’ because it requires considering the interaction of both
dimensions for half of the cards (Mathy & Bradmetz, 2004). Another way to represent the rule (using
the same structure but a different order) is to consider that half of the objects are classified by color
alone (dark), whereas the other half are classified on both the dimensions of color and shape (white).
In both cases, the white flowers require a two-step process.

One of the most complex two-dimensional categories is ‘‘dark flower OR light butterfly.’’ This cate-
gory represents the category set ‘‘dark flower, light butterfly’’ and allows these objects to be classified
separately from objects in the category set ‘‘dark butterfly, white flower.’’ However, this category is an
instance of null minimization because the number of objects it applies to is the same as the number of
features in the ‘‘minimized’’ rule. As can be seen in Fig. 1, classifying with this category requires apply-
ing reverse rules to flowers and butterflies. Dark flowers go in Category A, and white flowers go in Cat-
egory B; however, dark butterflies go in Category B, and white butterflies go in Category A. Hence, the
category involves a ‘‘total interaction’’ because it requires considering the interaction of both the
dimensions of color and shape for all items (Mathy & Bradmetz, 2004). Overall, using two Boolean
dimensions, only these three different task structures can be built; here we call these the Simple,
Intermediate, and Complex tasks, respectively.

Previous studies on rule-based category learning in both children (ages 4–12 years) and adults
(Bradmetz et al., 2008; Mathy, 2012) showed that this complexity metric predicts both learning times
across problems and response times across stimuli when the task was to discover the rules by an
inductive process. The effect of complexity on response times (which were measured after the rules
were correctly learned by the group of adults) is also particularly supportive of the idea that such
stimuli cannot simply be categorized using rote memorization, in which case no variance of response
times would be observed between different stimuli (i.e., one single step would be sufficient to associ-
ate any stimulus with the correct category).

Application to rule use in children

Experiments on rule-based category learning are very different from rule-use experiments (e.g.,
experiments using tasks like the DCCS and day–night tasks). In rule-use experiments, children are
directly told explicit verbal rules and then use them to classify objects or make other responses. In
contrast, in typical rule-based category learning experiments, participants are not told explicit verbal
rules for sorting. Instead, they attempt to learn these rules based on feedback given after they attempt
to sort stimuli.

Despite these differences, we think that the categorization rules (described by rule-based category
learning researchers) are useful for study task demands in children’s rule use. Suppose that children
are shown stimuli like those discussed above and are told separate rules for sorting each kind of stim-
ulus (e.g., ‘‘dark flowers go to Place A’’). Children might minimize the rules in representing and apply-
ing them. For example, they might minimize the rules ‘‘dark flowers go to Place A’’ and ‘‘dark butterflies
go to Place A’’ into the simpler categorization rule ‘‘dark go to Place A.’’ If children do minimize the
rules in this way, the complexity metric might predict the difficulty of various rule-use tasks.

Findings consistent with this prediction would be important for several reasons. First, they would
suggest that children’s rule use might depend on processes also involved in rule-based category learn-
ing. Rule-based categorization has been studied extensively but as an independent topic. Again, a chief
difference between these areas is that whereas children are typically told the categorization rules in
rule-use studies (including the current experiments), in rule-based category learning tasks partici-
pants are instead shown the stimuli and must learn a category representation by induction. As noted
above, the rule-based categorization literature has focused on conducting experiments involving at
least three dimensions: in children (e.g., Minda et al., 2008), in adults (e.g., Feldman, 2000; Shepard
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et al., 1961), and in monkeys (e.g., Smith, Minda, & Washburn, 2004). However, children’s use of more
basic two-dimensional rule structures has not been studied in preschoolers. Second, such findings
would suggest that the development of rule use is protracted during childhood and beyond. For
instance, Feldman (2000) reported a catalog of 3 two-dimensional rule-based category structures
(those that are studied in the current article) but also 13 three-dimensional and 237 four-dimensional
structures, which represent a large playing field for the development of rule use. Third, such findings
would bolster claims that at least some of children’s difficulty in rule use derives from limits of their
ability to represent more complex rule structures (Zelazo & Frye, 1998).

The current approach

The current experiments tested whether the rule-based category approach successfully predicts
the difficulty of rule use in young children. Experiment 1 tested this in two ways. First, it compared
the relative difficulty of three new rule-use tasks in preschool children aged 3–5 years. In all three
tasks, children were told rules for sorting four kinds of bidimensional cards to either of two categories.
Specifically, these rules assigned cards to be given to either of two animals: a sheep or a cat (e.g., ‘‘The
sheep likes the dark butterflies’’). Because children were told two rules in each task (i.e., a separate rule
for each of the two categories), the tasks were matched in complexity at the surface level. However,
the tasks varied in the complexity of the categorization rules that could be abstracted from these
rules; these are the rules already discussed and depicted in Fig. 1. It was expected that task difficulty
would be predicted by this difference between the tasks.

Second, children were also tested on a version of the Advanced DCCS. Although at a surface level
this task differs from the other tasks, at a deeper level, it is structurally similar to the most complex
of our new tasks. Fig. 1D depicts the rule structure of a version of the DCCS in which participants cat-
egorize items by color (e.g., white rabbits matched with the white boat, dark boats matched with the
dark rabbit) or by shape (e.g., dark boats need to be matched with the white boat, white rabbits need
to be matched with the dark rabbit).

One can notice in Fig. 1 that the decision trees of our Complex task and the DCCS task are similar in
shape. In the DCCS, the first level of the decision tree indicates the game being played (shape or color);
the second level indicates the correct categorization rule. In the Complex task, the first level corre-
sponds to the first dimension (color), which enables the stimuli to be categorized according to their
shape using the second level (note that the two dimensions can be reversed in the tree; the first level
can be associated with shape instead of color without changing the structure of the tree). This suggests
that the Complex task and the DCCS share the same decision structure. Hence, we expected these tasks
to be of similar difficulty, and we likewise expected performance across these two tasks to be
correlated.

Although the Complex task and the Advanced DCCS share the same decision structure, there are
important differences between these tasks. First, the tasks differ in the number of stimulus cards used
and in the number of rules memorized. The Complex task uses four different kinds of test cards, and
children must apply two rules for these cards (i.e., one sorting rule is assigned for each pair of target
cards). In contrast, the DCCS uses only two different kinds of test cards, and children must apply two
rules for these cards (i.e., both rules apply to both cards). As a consequence of this difference, the Com-
plex task uses different stimuli for the first and second rule-learning phases, whereas the DCCS uses
the same stimuli in both rule-learning phases. A second difference is that although both tasks feature
materials that factorially vary on two dimensions (i.e., two different shapes that appear in two differ-
ent colors), this two-dimensionality manifests itself differently in the tasks. In the Complex task, it
occurs only in the test cards that children sort and does not apply to the target cards (i.e., the sheep
and cat used to indicate where the test cards should be sorted). In this task, the target cards do not
share any features with the test cards and are only arbitrarily related to them. In contrast, in the
Advanced DCCS, there are only two kinds of target cards, but they do share the features of the test
cards, such that children see only a factorial crossing of the two dimensions (shape and color) when
looking at test cards in relation to the target cards. These differences between the tasks likely make
different demands on children. For instance, the DCCS may make fewer memory demands than the
Complex task because it uses fewer stimuli and fewer pairings between stimuli and rules. However,
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the Complex task may involve less interference; assigning one rule per pair of stimulus cards (Com-
plex task) probably causes less interference than reversing a rule for the same pair of cards (DCCS).
So, although we expected structural similarities between performance on the Complex task and the
Advanced DCCS, there were also many reasons to expect performance to differ somewhat.

Experiment 2 further tested whether the rule-based category approach successfully predicts the
difficulty of rule use in young children. In this experiment, we examined 5-year-olds’ response times
in completing the three new rule-use tasks. Response times have been shown to be useful for the
study of the categorization of compound stimuli in children, particularly to analyze the complexity
of strategies that children may apply (Visser & Raijmakers, 2012). We expected response times across
these three tasks to vary with the complexity of the categorization rules that can be abstracted in each
of them.
Experiment 1

The main aim of the first experiment was to test whether the rule-based category approach
predicts children’s performance on rule-use tasks. The Simple, Intermediate, and Complex tasks and
the Advanced DCCS task were administered to 124 preschoolers. To prevent children from
misunderstanding the instructions, tasks included a training phase for each rule with feedback from
the experimenter, followed immediately by a test phase without feedback. To match the procedure
across the rule-use tasks and the DCCS, we used the Advanced/Star/Border version of the DCCS
(Carlson, 2005; Chevalier & Blaye, 2009; Hongwanishkul et al., 2005). Although the advanced version
is more difficult than the standard DCCS (it is still difficult at 5 and 6 years of age), the decision struc-
ture on which the rules are based is similar to that of the standard DCCS. The main difference is that
the advanced version includes an extra block in which participants need to alternate between the
shape game and the color game. In keeping with the standard DCCS, we used a verbal cue instead of
a visual one (e.g., a border) to signal switches between games.
Method

Participants
A total of 124 healthy children (55 boys and 69 girls) were split into three age groups—3-year-olds

(M = 3.5 years, SD = 0.26, n = 42), 4-year-olds (M = 4.4 years, SD = 0.30, n = 39), and 5-year-olds
(M = 5.6 years, SD = 0.32, n = 43)—from two public schools of the same township (99% of kindergartens
are public in France). Most children were from middle-class families. All of the children participated
voluntarily, and their parents signed an informed consent form.
Stimuli
For the Simple, Intermediate, and Complex rule-use tasks, there were three sets of cards (randomly

associated with the tasks). Each laminated card depicted a bidimensional image (shape and color). The
cards in the ‘‘Nature’’ set consisted of two butterflies (one yellow and one green) and two flowers (one
yellow and one green). The ‘‘Vehicles’’ set consisted of two motorbikes (one gray and one orange) and
two cars (one gray and one orange). The ‘‘Cutlery’’ set consisted of two spoons (one pink and one
brown) and two forks (one pink and one brown). The decision to use several stimulus categories (bio-
logical kinds, vehicles, etc.) was thought to improve external and construct validity and limit carryover
effects. The 10 � 16-cm target cards depicted animals and were unrelated to the test cards: a sheep
and a cat. For the DCCS task, each target card (a red rabbit and a blue boat) was attached to a box.
The laminated test cards (7.0 � 9.5 cm) depicted blue rabbits or red boats.
Procedure
Each participant performed four tasks (the three rule-use tasks and the DCCS) in random order in a

single session.
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Rule-use tasks. The following sorting instructions were given once before the three rule-use tasks:
‘‘Here we have a sheep and a cat. I am going to tell you which cards the cat likes and which ones
the sheep likes. You have to give the cat what he likes and give the sheep what he likes. Do you
understand?’’ If the answer was ‘‘yes,’’ the tasks began. The experimenter repeated that the next task
would deal with the cat and the sheep whenever the DCCS was performed between two other tasks.
The sheep and cat images were each attached to one of two boxes in which children needed to place
the test cards. To minimize the influence of the previous trials, children were asked to place the
cards face down when sorting them into the boxes (the face down condition has been shown to
be easier than the face-up condition; Kirkham, Cruess, & Diamond, 2003).

Each task was composed of two rule-learning phases followed by a final test phase. In each task,
the two rule-learning phases used different cards and featured different rules. In each rule-learning
phase, children learned one rule for sorting two kinds of cards (e.g., green flowers, yellow flowers).
For example, they were told, ‘‘The sheep likes the green flowers and the cat likes the yellow flow-
ers.’’ Then children sorted a total of 6 cards (three series of the 2 cards such as the green flowers and
the yellow flowers) given in random order. Children received feedback in these trials, with the
instructions repeated each time an incorrect response was given. After these initial trials, children
sorted these same 6 cards again (given in random order) but without feedback from the experi-
menter. A similar procedure was used for the second rule; children first sorted 6 new cards while
receiving feedback (e.g., three series of 2 new cards for which the rule was ‘‘The sheep likes the yel-
low butterflies and the cat likes the green butterflies’’ if the task was complex) and then sorted a
second set of 6 cards without feedback. Finally, in the test phase, children sorted a total of 12 cards
(i.e., three series of the 4 cards previously seen given in random order), which required using both
sets of sorting rules (e.g., ‘‘The sheep likes the green flowers and the cat likes the yellow flowers’’
and ‘‘The sheep likes the yellow butterflies and the cat likes the green butterflies’’). Fig. 1 recapitu-
lates for each task how the two rule-learning phases succeeded one another, totaling five blocks and
36 cards (6 cards for Rule 1 with feedback, 6 cards for Rule 1 with no feedback, 6 cards for Rule 2
with feedback, 6 cards for Rule 2 with no feedback, and 12 cards for the final test phase in which the
two rules were mixed).

Fig. 1 shows the rules children learned and applied in each rule-learning phase and in the final test
phase. To illustrate the tasks here, we describe them using the Nature set only. Note, however, that the
particular cards used in each task varied across children and across tasks. In all tasks, the first rule-
learning phase required children to learn a rule assigning dark flowers to the sheep and white flowers
to the cat. The rules in the second rule-learning phase varied across the three tasks. In the Simple task,
children learned a parallel rule for the butterflies—again, dark to the sheep and white to the cat. In the
Intermediate task, they learned to assign both dark and white butterflies to the sheep, so no objects
were assigned to the cat. Finally, in the Complex task, the rules for the butterflies were reversed to
those for the flowers—dark butterflies to the cat and white butterflies to the sheep.

Advanced DCCS task. The DCCS was administered similarly to the rule-use tasks, with two rule-
learning phases followed by a final test phase. In the first rule-learning phase, children were told rules
either for the same color game or for the same object game (this was determined at random). For exam-
ple, in the same color game, children were instructed to put blue rabbits into the blue boat box and red
boats into the red rabbit box. As in the rule-use tasks, children then completed six trials with feedback
from the experimenter, followed by six further trials without feedback. Children then began the sec-
ond rule-learning phase, which used the rules for the other game (e.g., rules for the same object game if
the same color game was played first). Again, they completed six trials with feedback and a further six
trials without feedback. Finally, in the final test phase, children were told, ‘‘Now sometimes we are
going to play the same color game and the other times the same object game. You will have to sort
the cards by paying attention to which game we are playing. Let’s start.’’ Before each trial, the exper-
imenter asked, ‘‘If we’re playing the same color [or same object] game, where does this card go [the card
was given to children]?’’ and so forth. Depending on the speed with which children were able to cor-
rectly sort the cards, the instructions were sometimes reduced to ‘‘We are playing the color [or object]
game.’’ Given the verbal cue that prompted participants to use the second rule, it was not necessary for
the cards to be marked with a visual cue (Carlson, 2005; Chevalier & Blaye, 2009).
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Results

An assessment of the normality of data relating to error rates using the Shapiro–Wilk test showed
that the number of errors was not normally distributed as a function of age (3, 4, or 5 years) and as a
function of phase in each of the tasks. Parametric tests were run in violation of the normality assump-
tion because they are usually very robust against such violations. When appropriate, Gamma and
McNemar tests were performed on crosstabs.

A preliminary repeated measures analysis of variance (ANOVA) on mean error rates found no evi-
dence of performance varying across the Vehicle, Nature, and Cutlery stimulus sets, F(2,246) = 0.12,
p = .89, so this factor was not included in the main analyses. Another preliminary analysis indicated
no global order effects. Global order effects were analyzed by recoding the six possible permutations
of our three new rule-use tasks by adding 1 to a variable every time a pair of tasks was administered
with the purportedly simpler task given first. Using this recoding method simplified the analysis by
reducing the six possible permutations of the three tasks to four cases (i.e., scores 0–3). A one-way
ANOVA on the global proportion of errors was nonsignificant when this variable was used as the main
factor, F(3,119) = 1.13, p = .34. When rank effects were analyzed task by task (the factor represented
whether the task was performed first, second, third, or last), including the DCCS, none of the four sep-
arate one-way ANOVAs was significant either, Fs(3,120) < 1.10, p > .35.

We hypothesized that performance in the final test phase, where rules are mixed, would vary among
the three new rule-use tasks but not between the Complex task and the Advanced DCCS. Table 1 shows
how performance varied across the four tasks. We conducted a 4 (Task: Simple, Intermediate, Complex,
or DCCS) � 3 (Age: 3, 4, or 5 years) repeated measures ANOVA on the proportion of errors in the final
test phase, with task as a within-participants factor and age as a between-participants factor. This
revealed a significant variation between the mean number of errors in the different tasks,
F(3,360) = 128, p < .001, gp

2 = 52%. Performance was significantly better in the Simple task (M = 7%,
SD = 1.8) than in the Intermediate task (M = 23%, SD = 1.6), F(1,121) = 62.90, p < .001, gp

2 = 34%, and sig-
nificantly better in the Intermediate task than in the Complex task (M = 41%, SD = 1.5), F(1,121) = 76,
p < .001, gp

2 = 39%. There was no significant difference, however, between the performance on the Com-
plex task and the DCCS (M = 39%, SD = 1.4). Age also had an effect on the proportion of errors,
F(1,120) = 721, p < .001, gp

2 = 86%. Post hoc analyses (Newman–Keuls) showed that 3-year-olds made
significantly more errors (M = 35%) than 4-year-olds (M = 28%), who in turn made significantly more
errors than 5-year-olds (M = 18%), regardless of task type. We also observed an interaction between
age and task type for the proportion of errors, F(6,360) = 2.60, p = .019, gp

2 = 4%, which attests to the fact
that the gaps between the tasks were smaller for 5-year-olds. When the tasks were analyzed separately
Table 1
Mean percentage of errors observed in the final test phase (fifth block) of the three rule-use tasks (Simple, Intermediate, and
Complex) and DCCS in Experiment 1 for the three age groups and mean percentage of errors and correct response times observed
in the final test phase (fifth block) of the three rule-use tasks in Experiment 2.

Experiment 1

Task Age (years) ANOVA

3 4 5 F(2,121) p g2 Post hoc

Simple 14 (3.0) 03 (3.1) 03 (2.9) 4.6 <.05 .07 3 < (4,5)
Intermediate 31 (2.7) 24 (2.8) 14 (2.7) 9.2 <.001 .13 (3,4) < 5
Complex 47 (2.6) 44 (2.8) 31 (2.6) 10.2 <.001 .15 (3,4) < 5
DCCS 48 (2.4) 43 (2.5) 25 (2.4) 26.5 <.001 .31 (3,4) < 5

Experiment 2

% Error Correct RT

Simple 5 (1.4) 1854 (99)
Intermediate 14 (2.9) 1805 (115)
Complex 43 (3.7) 2481 (139)

Note. Standard errors are given in parentheses.



Table 2
Correlation matrix for Experiment 1.

Simple Intermediate Complex

Simple
DCCS .267 .284 .576

(.003) (.001) (.000)
Simple .270 .225

(.002) (.012)
Intermediate .263

(.003)

Controlling for age
DCCS .180 .114 .489

(.047) (.210) (.000)
Simple .213 .157

(.019) (.084)
Intermediate .154

(.090)

Note. p is given in parentheses and N = 124.
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to study the effect of age, each one-way ANOVA produced a significant result. One prediction of our
approach is that the three complexities can lead to different patterns at each age. The last column of
Table 1 shows how the different age groups were differentiated by the post hoc analyses (Bonferroni
corrections were made for the pairwise comparisons). The Simple task isolated 3-year-olds, and the
other two tasks isolated 5-year-olds. However, children’s performance on the Intermediate task might
have been overestimated in these analyses because a 75% success rate in this task can be achieved by
simply perseverating on the rule from the first rule-learning phase. In the online Supplementary
material, we report additional analyses showing the same overall findings when controlling for these
concerns.

We also examined whether performance was correlated across the Complex task and the Advanced
DCCS. We predicted that performance would be correlated because, according to the rule-based cat-
egory approach, both tasks depend on the same embedded rule structure. Although we observed
slightly better performance on the DCCS than on the Complex task for 5-year-olds (24.61% error rate
in the DCCS vs. 31.2% in the Complex task), and this difference was significant, t(42) = 2.49, p = .017,
we obtained a significant relationship based on the number of correct response in each task across
participants, r = .58, p < .001, N = 124 (see Table 2), and this correlation remained significant after con-
trolling for age, r = .49, p < .001. Although this correlation represents less than 25% of shared variance,
it is still the largest correlation observed among the tasks. Although the correlations among the four
tasks were all significant (between .225, p = .012, and .284, p = .001, when controlling for age, the
minimal and maximal values were lowered to between .114, p = .21, and .213, p = .019, and in this case
two of them remained significant), we still observed a significant greater correlation between the
DCCS and the Complex task than between all of the other pairs. For instance, the t using Steiger’s
(1980) formula was at least t(123) = 3.46, p < .001, for the correlation between the DCCS and the
Complex task and other correlations. This finding supports another prediction of the rule-based
category approach.

It is also worth mentioning that the difficulties in the final test phase did not entirely derive from
difficulty with switching to the second rule. Effectively, the percentages of errors for the Simple task,
the Intermediate task, the Complex task, and the DCCS in the second rule-learning phase were 0.5%,
1.8%, 6.7%, and 6.9%, respectively, across all age groups, which means that the second rule was most
often learnable using our procedure. Hence, the difficulty in the final test phase encountered by
children cannot be reduced to the slight increase of errors while using the second rule but rather to
difficulty in combining the two rules. In addition, another correlation was found between the DCCS
and the Complex task, after controlling for age, in the second rule-learning phase when the second rule
was tested without any feedback (fourth block), r = .226, p = .012. This correlation shows that



Table 3
Frequencies of the perseveration, transitional, and switch states in the post-switch phase where children received no feedback for
their post-switch behavior for the DCCS and the Complex task.

DCCS Complex task

Perseverators Transitionals Switchers

Perseverators 1 0 4
Transitionals 1 3 3
Switchers 1 8 103
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perseveration on the first rule was similar between the two tasks.1 The histograms of the number of
correct responses by age group during the fourth block for the DCCS and the Complex task are reported
in the Supplementary material and show that most children in all age groups correctly learned the
second rule in both tasks. Still, we classified the participants as switchers if they obtained five or more
correct responses in the fourth block, as perseverators if they obtained one correct response or no correct
responses, or as transitional otherwise. The overall crosstab (Table 3) reporting the frequencies of
participants in these different states indicated that among the perseverators of the DCCS, 1, 0, and 4 par-
ticipants were classified as perseverators, transitional, and switchers, respectively, in the Complex task;
the remaining crosstab indicated frequencies equal to 1, 3, and 3 participants, respectively, for the tran-
sitional group of the DCCS and 1, 8, and 103 participants, respectively, for switchers of the DCCS. Thus,
107 participants obtained the same classification in both tasks (although this number was inflated by
103 participants who successfully switched in each task), 12 participants differed in only one level of
classification, and 5 participants differed in two levels of classification. This crosstab led to a significant
test of association (Gamma = 2.0, p = .045). Summing up the crosstab for each task, we observed 3, 11,
and 110 children in the respective perseveration/transitional/switch states in the Complex task and 5,
7, and 112 children in the same respective states in the DCCS.

One last analysis aimed at testing whether there were differences in performance on any of the
rule-learning phases, especially between the phases that did and did not give feedback, and whether
these differences related later to differences in the test phase. Although not always significant, we
found a systematic slight decrease in error rates between the feedback phases and the no feedback
phases (the maximal difference observed was a 5.5% gain). Among the six paired-sample t tests that
were run on the mean error rate per block, four tests were significant, ts(123) > 2.2, ps < .05, but only
two of them remained significant after a Bonferroni correction for the family-wise error rate (for the
Simple task, between Block 1 and Block 2, and for the Moderate task, between Block 3 and Block 4).
When we computed the mean difference between the feedback phases and the no feedback phases
for each participant, which we paired to their performance in the final test phase, the correlation
was not significant, r = .02, p = .14, N = 124.

Discussion

The main predictions of the rule-based category approach were supported. As predicted, perfor-
mance varied among the three new rule-use tasks; performance was better in the Simple task than
in the Intermediate task and better in that task than in the Complex task. We had also predicted that
performance would not significantly differ between the Complex task and the advanced version of the
DCCS and that performance across these tasks would correlate. These predictions were also supported
overall, although with some caveats. When considering all children together, performance did not
significantly differ between the Complex task and the DCCS, although for 5-year-olds there was a
slight performance advantage for the DCCS. Likewise, performance on these two tasks was correlated.
Although the correlation was somewhat weak, it was nonetheless stronger than any other correlation
between the tasks administered. As noted earlier, although the Complex task and the DCCS are
1 Children were judged to perseverate in the post-switch phase of the Complex task if they did not respond correctly. Because
the responses needed to be reversed from one rule to the next in this task, children who responded incorrectly applied the first rule
instead of the second rule in the post-switch phase.
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proposed to depend on the same underlying rule structure, there are many other differences between
these tasks (e.g., differences between the stimuli might make the Complex task more taxing on mem-
ory); these differences might be responsible for the relatively weak correlation and the performance
difference in 5-year-olds. Regardless, the findings provide overall support for the suggestion that the
rule-based category approach can predict the relative difficulty of rule-use tasks in young children.

These findings may also be informative about children’s difficulty with the DCCS and suggest that
this difficulty may principally stem from the complexity of the entire rule system that needs to be kept
in mind to sort the cards. We found that performance on the Complex task and the Advanced DCCS
was correlated, which is consistent with the possibility that both tasks depend on similar underlying
rule structures. As such, the findings cast doubt on certain explanations for children’s difficulty with
the DCCS. For example, one explanation for poor performance on the DCCS is that young children have
difficulty in redescribing the bivalent cards in multiple ways according to the different rules in the
DCCS (Kloo & Perner, 2003, 2005; Perner & Lang, 2002; Zelazo et al., 2003b). However, our Complex
task does not make these demands (i.e., each card leads to one category unequivocally and without
the need for redescription) but is as difficult as the Advanced DCCS, and we found that performance
on the tasks is correlated. This suggests that performance on the DCCS might not be strongly related
to the ability to describe stimuli in multiple ways. Another explanation for difficulty with the DCCS is
that young children are unable to disengage from the pre-switch rule, which they continue to apply
during the post-switch phase in the DCCS. Indeed, it can be difficult to disengage from the first rule
to load the elements of the second rule into working memory (Bialystok & Martin, 2004; Hanania,
2010; Kirkham et al., 2003; in adults, see Allport, Styles, & Hsieh, 1994; Allport & Wylie, 2000;
Meiran, 1996; Monsell, 2003). However, our Intermediate task also required children to disengage
from a pre-switch rule, and performance on this task was superior to performance on the Complex
task or DCCS. In addition, performance was particularly strong on both the Complex task and the DCCS
when the second rule was tested without any feedback (fourth block).2 These results suggest that
perseveration on the first rule cannot entirely account for children’s difficulty in coordinating the two
rules in the final test phases of these tasks.

However, accounts of DCCS performance that highlight the role of working memory (Cepeda &
Munakata, 2007; Chevalier & Blaye, 2008; Morton & Munakata, 2002) might better account for this
result because in the Intermediate task the less complicated sub-rule is easier to load. These claims
are all based on the conclusion that the observed similarities between performance on the Complex
task and the Advanced DCCS result because the tasks are represented similarly and may draw on
the same (or overlapping) psychological abilities; in the General Discussion, we acknowledge the need
for caution in concluding this.
Experiment 2

The objective of the second experiment was to replicate the ordering of the three rule-use tasks
(Simple, Intermediate, and Complex) found in the first experiment but with a refined analysis of
performance based on response times (RTs). RT is a particularly interesting dependent variable to
show that the rules instructed in the current study do not merely reduce to rote learning. If
2 The percentages of errors for both the Complex task and the DCCS were less than 7% in this particular phase. This is less than in
previous studies that used no feedback but is still consistent with a recent study showing that feedback on post-switch behavior is
helpful even in 3-year-olds (van Bers, Visser, & Raijmakers, 2014b). Children are usually not provided with corrective feedback
during the post-switch trials, and it is only children who pass the post-switch phase of the standard version of the DCCS who can
proceed to the advanced version (Zelazo, 2006). In our version, all children were provided with corrective feedback during the first
six trials of the post-switch phase, which might explain why most of the children correctly classified the post-switch cards after
this phase. The number of errors was a bit higher during the first six trials with feedback, amounting to a global 14.5% of errors
(23% in 3-year-olds) instead of 6.9% for the next six trials without feedback. Performance on the first six trials is still quite low, but
again this can be explained by the feedback that was given throughout the phase. In 3-year-olds, 27 children obtained five or six
correct responses in the post-switch phase that included feedback, representing 64% of the children, which is comparable to the
85% (instead of 38% in the control condition) obtained by van Bers and colleagues (2014b) in their condition with feedback.
Altogether, this result suggests that perseveration on the first rule cannot entirely account for children’s difficulty in coordinating
the two rules in the final test phases of these tasks.
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participants simply engaged in rote learning, we would obtain similar RTs for all of the to-be-catego-
rized objects (i.e., all of the objects across rules and tasks would be classified using one branch per
object). Instead, we expected that RTs would vary across the three tasks and that they would be
predicted by the complexity of the rule structures that can be abstracted from the different task
instructions (i.e., because more complex rules require a greater number of decision steps) struc.,
because more complex rule dicted for the asks ficulty, ting of Experiment 1 results already. nistered.
Complex task. ari. Another prediction based on RTs is related to the effect of rule complexity on mixing
costs. If rule complexity is the complexity of the rule structures that can be abstracted from the dif-
ferent task instructions, mean difference in RTs between using a single rule and using mixed rules
should increase with rule complexity because more complex rules are based on more conflicting
sub-rules (i.e., on average, the number of features that are different from one sub-rule to another
increases along the Simple, Intermediate, and Complex task dimension). Because collecting RT data
was our chief interest in this experiment, we tested children who would find the tasks to be quite fea-
sible and who would pass on most trials. For this reason, we tested a group of 5- and 6-year-olds.

Method

Participants
A total of 36 preschool children (Mage = 5.7 years, SD = 0.4, 15 boys and 21 girls different from those

in Experiment 1) from two different classes of two different public schools voluntarily participated in
this study. Most children were from middle-class families. Consent forms were distributed to all par-
ents, and we included only participants for whom we had received parental consent.

Materials and stimuli
Computerized versions of the tasks were administered on a laptop computer. The categorization

tasks were developed and run using E-Prime 2 software (Psychology Software Tools).
Three different sets of four stimuli were randomly used in the three tasks, with the constraint that

each task was associated with the sets in equal proportion. The three sets of four compound stimuli
measuring 5 � 5 cm were constructed using a combination of two specific shapes and two specific col-
ors in each set. The first set, consisting of simple images (blue square, red square, blue circle, and red
circle), was used to illustrate the procedure; the other two sets were based on stars, pentagons, and
two abstract shapes from the Jessica S. Horst database (http://www.sussex.ac.uk/wordlab/noun),
and different shadings and patterns were used instead of simple colors (e.g., horizontal or vertical
lines, shades of gray). These three sets were simply built to induce minimal interference regarding
features.

Procedure
Children completed the Simple, Intermediate, and Complex tasks, with task order randomized

across participants. During testing, children sat facing the laptop computer. The experimenter
sat close to children to give the instructions during the three tasks. Children were instructed that
they would give pictures to either Mickey Mouse or Donald Duck by pressing the ‘‘Mickey’’ or
‘‘Donald’’ keys on the keyboard. On each key was a colored sticker showing the face of the corre-
sponding character. Children were told to use both hands during the tasks and to press the keys
with their index fingers. They were also instructed to do their best to avoid errors.

The computerized versions of the tasks differed somewhat from the versions in Experiment 1.
In the current versions, children first learned and practiced categorization rules in four blocks, each
with 8 trials, and then completed a final test block with 16 trials. Before each block, instructions
were given verbally by the experimenter with a corresponding image on the computer screen. In
explaining the instructions, the experimenter referred to stimuli without naming or describing
them (e.g., ‘‘This picture goes to Mickey,’’ ‘‘These pictures go to Donald’’). In the corresponding
image (shown while the instructions were explained), the pictures were organized in rows. Each
row was followed by an arrow pointing to a picture of Mickey or Donald to show the category
to which each object was assigned. The instruction before the final test block reminded partici-
pants of both rules simultaneously.

http://www.sussex.ac.uk/wordlab/noun
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Although some aspects of the procedure differed from Experiment 1, the rule structures of the tasks
remained the same. In Block 1 children learned a rule for categorizing two stimuli, and in Block 2 they
learned the other rule used for categorizing the other two stimuli. In these blocks, children received
feedback after each trial; after correct responses the word ‘‘OK’’ appeared in green at the center of
the screen, and after incorrect responses the word ‘‘FALSE’’ appeared in red. These words appeared
for 1500 ms, and the experimenter also read the feedback to participants. In the remaining blocks,
no feedback was given. In Block 3 children applied the first rule again, and in Block 4 they applied
the second rule. Finally, children completed the final test block, which required them to categorize
all four kinds of objects and to switch between the two rules.

Within each of the five blocks, the stimuli were presented sequentially and randomly, although each
stimulus appeared the same number of times (i.e., in Blocks 1–4, each of the two stimuli appeared four
times per block; in the final test block, each of the four stimuli appeared four times). A fixation cross
appeared and remained in the middle of the screen for 1000 ms before each stimulus appeared. The
total length of the experiment was approximately 20 min, including instructions and breaks.

Results

We conducted a series of repeated measures ANOVAs with task (Simple, Intermediate, or Complex)
as the main independent variable and error rates and RTs as the two dependent variables. We also
used mixing cost (i.e., the mean difference in RTs between using a single rule and using mixed rules)
as another dependent variable.

Error rates
A preliminary repeated measures ANOVA on mean error rates found no evidence of performance

varying across the three stimulus sets, F(2,70) = 2.09, p = .13, so this factor was not included in the
main analyses. As in Experiment 1, global order effects were analyzed by recoding the six possible per-
mutations of our three rule-use tasks into a permutation variable with scores ranging from 0 to 3. A
one-way ANOVA on the global proportion of errors across the rule-use tasks was nonsignificant when
permutation was used as the main factor, F(3,32) = 0.50, p = .68. When rank effects were analyzed task
by task (the factor represented whether the task was performed first, second, third, or last), none of
the four separate one-way ANOVAs was significant either, Fs(2,33) < 2.40, p > .10.

We expected error rates to vary across the three tasks (Table 1). A repeated measures 1 � 3 ANOVA,
with task complexity as a within-participants variable, revealed significant variation between the
mean number of errors in the final test blocks of the tasks, F(2,70) = 56.60, p < .001, gp

2 = 62%. Pairwise
comparisons based on the Bonferroni correction showed that the mean percentage of errors in the
Simple task (M = 5%, SD = 1.4) was significantly lower (p = .003) than in the Intermediate task
(M = 14%, SD = 2.9), which in turn was significantly lower (p < .001) than in the Complex task
(M = 43%, SD = 3.7).

As in Experiment 1, these analyses may overestimate children’s performance in the Intermediate
task because use of a global univalent rule (i.e., perseverating by the first rule) would allow children
to respond correctly on 75% of the trials. As in Experiment 1, we report additional analyses showing
the same overall findings when controlling for these concerns in the Supplementary material.

Similar to Experiment 1, a further analysis aimed at testing whether there were differences in per-
formance between the phases that did not give feedback and the phases that gave feedback and
whether these differences related later to differences in the test phase. We found a single significant
12% gain for the Complex task between Block 1 and Block 3, t(35) = 2.30, p = .026, but this result did
not hold significant after a Bonferroni correction for the family-wise error rate. In addition, as in
Experiment 1, when we computed the mean difference between the feedback phases and the no
feedback phases for each participant, which we paired to their performance in the final test phase,
the correlation was not significant, r = .08, p = .65, N = 36.

Correct response times
We examined RTs only for trials in which correct responses were given. Overall, RTs in the final

block varied from 1854 ms (SD = 596) for the Simple task, to 1805 ms (SD = 689) for the Intermediate
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task, to 2481 ms (SD = 824) for the Complex task, F(2,68) = 18.40, p < .001, gp
2 = .35.3 Although we

expected significant differences between each pair of tasks, post hoc comparisons using Bonferroni
correction did not show a significant difference between the Simple task and the Intermediate task.
Nonetheless, RTs were significantly greater in the Complex task than in both the Simple task
(p < .001) and the Intermediate task (p < .001). However, opportunities for getting faster RTs are greater
in the Intermediate task because three cards belong to the same category. In the Supplementary material,
we report additional analyses that better differentiate the Intermediate task from the Simple and
Complex tasks when trials were selected to match the decision structures.

Mixing cost
Although many components can be computed in task switching, including alternation costs, mixed

list costs, and switch costs (Meiran, 2000), we chose to compute a simple mixing cost for every par-
ticipant and each task; this was calculated with the formula RT_Block5 � (RT_Block3 + RT_Block4)/2.
The repeated measures ANOVA showed that the mixing costs (�31 ms for the Simple task, 382 ms for
the Intermediate task, and 509 ms for the Complex task) increased significantly with task difficulty,
F(2,58) = 4.90, p = .01, gp

2 = .15. Using the Bonferroni adjustment, the post hoc comparisons showed
a single significant difference between the Simple task and the Complex task (p = .04), although we
also obtained a significant difference between the Simple task and the Intermediate task (p = .02)
using Fisher’s LSD (least significant difference).

Latent Markov modeling
In this experiment, we also collected trial-by-trial data. One advantage of trial-by-trial data is that

they allow an analysis of accuracy in the post-switch phase that is based on latent Markov models.
This method is more powerful than simply reporting frequencies based on some arbitrary pass/fail cri-
terion.4 According to van Bers and colleagues (2011), there are three main categories of participants usu-
ally found for the DCCS, namely that (a) participants switch correctly and make (almost) all items correct,
(b) they perseverate, or (c) they show a transition from perseveration to switching. Because the current
experiment focused on 5- and 6-year-olds, we did not expect to find children who predominantly per-
severate. We expected most children to switch correctly and a small transitional group to be shifting
from perseverating to switching.

Following van Bers and colleagues (2011), we fit different latent Markov models to the trial-by-trial
accuracy data of the Complex task in the post-switch phase. We used the depmixS4 package (Visser &
Speekenbrink, 2010) for the R statistical programming environment (R Development Core Team, 2009)
and based our analysis on Block 4, in which no feedback was provided to children. As in Experiment 1,
a first simple analysis of the Complex task sought to classify children as perseverators (accuracy 61
correct response across the entire post-switch block), as in transition (accuracy between 2 and 6 cor-
rect responses), or as switchers (accuracy on at least 7 of 8 responses; these children were considered
to have passed the post-switch phase). Of the 36 children, 3 were classified as perseverators, 6 were
classified as in transition, and 27 were classified as switchers. We then split the 36 children into two
groups around the median age (70 months). However, the crosstab reporting the frequencies of par-
ticipants in the different states according to age group did not lead to a significant test of association
between the two ordinal variables (Gamma = �.16, ns). Splitting children showing each response pat-
tern by age: perseverators included 1 younger child and 2 older children, children in transition
included 2 younger children and 4 older ones, and switchers included 15 younger children and 12
older ones.

Transitions from one response to the next were coded as ‘‘s’’ (switch) when correct, ‘‘p’’
(perseveration) when incorrect, ‘‘f’’ (forward) when correct but preceded by an incorrect response, or
‘‘b’’ (backward) when incorrect but preceded by a correct response. (Although the extra ‘‘f’’ and ‘‘b’’
3 The degrees of freedom is 68 instead of 70 because one of the participants obtained absolutely no correct response in the
Complex task in the final block, although this participant did pass the previous blocks; one simple explanation is that the
participant systematically reversed the two rules.

4 We did not take this approach in Experiment 1 because in that experiment we neglected to record children’s responses trial by
trial.
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codes are not necessary to study the patterns of responses, they highlight the directions of transitions in
responses.) Overall, we found only 12 different patterns, and these allowed us to categorize children
into three groups: 27 switchers (24 ssssssss, 1 sssssssb, 1 ssssbfss, and 1 ssbfssss), 6 transitional
(1 pfsssbpp, 1 ssssbppp, 2 sssssbpp, 1 sssssbpf, and 1 ssbppppp), and 3 perseverators (1 pppppppp,
1 pppppppf, and 1 sbpppppp). Across individuals, there were overall 10 chances out of 213 to observe
a backward switch and 5 chances out of 39 to observe a forward switch. The 2.6 odds ratio computed on
these numbers shows that it was 2.7 times more likely to observe a forward switch than a backward
switch, but this estimation is made globally across individuals and does not take into account
individual estimations.

More precise estimates of the transitional probabilities based on these 36 individual patterns were
obtained by running an analysis based on latent Markov models. This analysis was inspired by van Bers
and colleagues (2011). Although simpler than in the original study, the analysis suggests that the best
model for the current data is a two-state model (including a perseveration state and a switch state) in
which the probability of a shift from the perseveration state to the switch state was .08 instead of .04 for
the reverse switch. Our probability (.08) is lower than the one found by van Bers and colleagues (.15),
probably because our children were older (children were 52 months old in the van Bers et al.’s study).
The initial probability of a switch state was .94 (instead of .98 in van Bers et al.), and the initial
probability of a perseveration state was .06 (instead of .01 in van Bers et al.). The probability to keep
perseverating was .92, and the probability to keep switching was .96. The log likelihood (�64.7,
df = 5) and two information criteria (AIC [Akaike] = 139.4; BIC [Bayesian] = 157.7) were lower than in
the model where the transition probabilities between different states were fixed to zero (log likeli-
hood = �83.6, df = 3; AIC = 177.3; BIC = 195.6) and lower than in a one-state model (log likeli-
hood = �128, df = 1; AIC = 258; BIC = 262). When testing the two closest models, we found a
significant chi-square difference between the restricted model (one state) and the more general model
(two states with transitional probabilities allowed), v2(5–1) = �2 [�83.6 � (�64.7)] = 37.8, p < .001.
Discussion

As in Experiment 1, error rates varied among the three rule-use tasks; performance was better on the
Simple task than on the Intermediate task and better on that task than on the Complex task. When
examining RTs, we also observed differences among the tasks, although the main analysis found
significant differences only between the Complex task and the Simple and Intermediate tasks. We also
found that most of the children tested in this experiment successfully switched to the second rule in the
post-switch phase, which again suggests that perseveration on the first rule cannot entirely account for
children’s difficulty in coordinating the two rules in the final test phases of the Complex task.
General discussion

The findings of these two experiments provide evidence that the rule-based category learning
approach (e.g., Minda et al., 2008) can be used to successfully predict rule use in preschool-aged
children. In a first experiment, we examined children’s performance on three new rule-use tasks. In
each of the three new tasks, children were given instructions for sorting four kinds of stimuli. The
instructions were matched in the number of to-be-classified cards, so it might be expected that chil-
dren should perform similarly on all three new tasks. Instead, performance varied depending on the
complexity of the rule structure that could be abstracted from the instructions. In this experiment,
children also completed the Advanced DCCS task, a version of the DCCS in which children are ran-
domly cued to switch between the two rules on multiple trials instead of needing to switch between
the rules only once (e.g., Carlson, 2005). Although this task featured quite different instructions from
those used in our Complex task, we found that performance on these two tasks was correlated and
mostly comparable. This was predicted by the rule-based category approach because according to that
approach both tasks depend on the same underlying rule structure.

A second experiment replicated the finding that children’s performance on the three new rule-use
tasks is predicted by the complexity of the rules that can be abstracted in each task. Moreover, this
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experiment showed that response times also vary with this complexity, although we found no system-
atic significant result isolating the three tasks according to their complexity. These latter findings are
broadly consistent with previous studies suggesting that task complexity predicts response times (e.g.,
Deák, Ray, & Pick, 2004; Emerson & Miyake, 2003; Rubinstein, Meyer, & Evans, 2001).

Together, these findings bolster claims that at least some of children’s difficulty in rule use derives
from limits of their ability to represent rule structures (Zelazo & Frye, 1998). The findings likewise sug-
gest that children do not passively follow instructions in rule-use tasks; if children had simply fol-
lowed the task instructions by rote, they should have performed similarly in our Simple,
Intermediate, and Complex tasks because the instructions in all three tasks specified how to categorize
four kinds of stimuli. Instead, children’s performance was predicted by the complexity of the rule
structures that can be abstracted from these instructions, which implies that children do abstract or
generalize a rule structure from instructions. These findings are in line with other studies showing
that children, like human adults, can better transcend association-based processes to form abstrac-
tions (e.g., Shepard et al., 1961). These findings also connect to the idea that young children who per-
form well on our tasks can form solid abstract representations that are not stimulus specific
(otherwise, there would be no minimization of the rules and children would associate each of the
stimuli to only one category by rote learning) and that these representations might be used to gener-
alize to novel stimuli (Kharitonova, Chien, Colunga, & Munakata, 2009; Kharitonova & Munakata,
2011; van Bers, Visser, & Raijmakers, 2014a).

These findings are also important for several other reasons. First, they provide preliminary evi-
dence that children’s rule use depends on processes also involved in rule-based category learning.
As such, the findings suggest a connection between two different aspects of cognition (i.e., rule use
and rule-based category learning) that have been studied extensively but separately from one another.
One limitation of the rule-based category learning field has been that categorization was generally
studied through classification rather than category use (Markman & Ross, 2003), although a few more
recent models can better connect both aspects by integrating category learning and inference
mechanisms (e.g., Love, Medin, & Gureckis, 2004). In most studies of rule-based categorization, adult
participants attempted to learn complex rule-based categories, varying in three perceptual dimen-
sions, and participants were not usually tested after the learning criterion had been reached (e.g.,
Feldman, 2000; Nosofsky et al., 1994; Shepard et al., 1961). We used simpler rule structures in inves-
tigating children, and the children were explicitly told the rules they needed to apply. We found that
children’s rule use was predicted by the complexity of the rule structures that could be abstracted
from the instructions; young children were successful in using simpler rule structures and produced
more errors when using more complex rules.

Second, as noted above, the findings may be informative about children’s difficulty with the DCCS.
Specifically, the findings are consistent with the possibility that difficulty on the task principally stems
from the complexity of the rule system that needs to be represented. In our first experiment, perfor-
mance on the Complex task and the Advanced DCCS was correlated, which was predicted because
both tasks are posited to depend on similar underlying rule structures. As discussed earlier, these find-
ings might be difficult to explain given other accounts of children’s difficulty with the DCCS, including
accounts claiming that poor performance results from children having difficulty in redescribing biva-
lent cards according to different rules (Kloo & Perner, 2003, 2005; Perner & Lang, 2002; Zelazo et al.,
2003b) and accounts claiming that difficulty results from an inability to disengage from the pre-switch
rule. However, drawing these connections assumes that the observed similarities between perfor-
mance on our Complex task and the Advanced DCCS arise because both tasks draw on the same rep-
resentational resources, and although this possibility is consistent with the current findings, the
findings stop short of showing this and other explanations for the similar performance are possible.

Third, the findings suggest that the development of rule use may be quite protracted. With age,
children became more successful in rule-use tasks depending on increasingly complicated rule struc-
tures. Although our experiments examined children’s ability to apply only three rule structures, many
more complicated rule structures could be used to measure rule use in older children and in adults
(e.g., Feldman, 2003a). Aside from the three rule structures used in the current study, 13 rule struc-
tures are possible with three-dimensional stimuli and more than 200 rule structures are possible with
four-dimensional stimuli. The complexity of each of these rule structures can be indexed (as discussed
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in the Introduction) and used to study the development of rule use in older children and adults and to
refine the study of switch costs that have been limited to a single rule structure so far (Diamond &
Kirkham, 2005). Based on the current findings, it might be conjectured that complexity will predict
both the difficulty of rule use and the difficulty of switching with these other more complicated rule
structures. Answering these questions will be an exciting project for future research.
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