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a b s t r a c t

Short term memory is famously limited in capacity to Miller’s (1956) magic number 7 ± 2—
or, in many more recent studies, about 4 ± 1 ‘‘chunks’’ of information. But the definition of
‘‘chunk’’ in this context has never been clear, referring only to a set of items that are treated
collectively as a single unit. We propose a new more quantitatively precise conception of
chunk derived from the notion of Kolmogorov complexity and compressibility: a chunk is
a unit in a maximally compressed code. We present a series of experiments in which we
manipulated the compressibility of stimulus sequences by introducing sequential patterns
of variable length. Our subjects’ measured digit span (raw short term memory capacity)
consistently depended on the length of the pattern after compression, that is, the number
of distinct sequences it contained. The true limit appears to be about 3 or 4 distinct chunks,
consistent with many modern studies, but also equivalent to about 7 uncompressed items
of typical compressibility, consistent with Miller’s famous magical number.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

In a famous paper, Miller (1956) proposed that the capac-
ity of short-term memory (STM) is limited to a ‘‘magical
number’’ of about seven (plus or minus two) items.1 This
limit is usually expressed in terms of ‘‘chunks’’ (Anderson,
Bothell, Lebiere, & Matessa, 1998; Gobet et al., 2001; Simon,
1974; Tulving & Patkau, 1962), meaning groups of items that
have been collected together and treated as a single unit, in
part to accommodate the observation that apparent span
may be increased if items can be readily grouped together into
larger units. For example, amid a sequence of letters the
familiar string USA or the repeating pattern BBB might each
serve as a single chunk, rather than as three separate items
each. An extreme example of chunking is the subject S.F. dis-
cussed in Ericsson, Chase, and Faloon (1980), who despite

average intelligence was able to increase his apparent digit
span to almost 80 digits by devising a rapid recoding system
based on running times, which allowed him to group long
sequences of digits into single chunks.

The capacity limit is traditionally attributed to forgetting
by rapid time-based decay (Baddeley, 1986; Barouillet,
Bernardin, & Camos, 2004; Barouillet, Bernardin, Portrat,
Vergauwe, & Camos, 2007; Burgess & Hitch, 1999; Henson,
1998; Jonides et al., 2008; Nairne, 2002; Page & Norris,
1998) or mutual interference between items (Lewandow-
sky, Duncan, & Brown, 2004; Nairne, 1990; Oberauer &
Kliegl, 2006). The span is also substantially influenced by
the spoken duration of the constituent items, a result which
runs against a constant chunk hypothesis and which has
been interpreted in terms of a phonemically-based store of
limited temporal capacity (Baddeley, Thomson, & Buchanan,
1975; Burgess & Hitch, 1999; Estes, 1973; Zhang & Simon,
1985). Though verbal STM is well known to depend on
phonological encoding (Baddeley, 1986; Chen & Cowan,
2005), the sometimes dramatic influence of chunking points
to abstract unitization mechanisms that are still poorly
understood.
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Notwithstanding the fame of Miller’s number (Baddeley,
1994), many more recent studies have converged on a smal-
ler estimate of STM capacity of about four items (Baddeley &
Hitch, 1974; Brady, Konkle, & Alvarez, 2009; Broadbent,
1975; Chase & Simon, 1973; Estes, 1972; Gobet & Clarkson,
2004; Halford, Baker, McCredden, & Bain, 2005; Halford,
Wilson, & Phillips, 1998; Luck & Vogel, 1997; Pylyshyn &
Storm, 1988, 2008). The concept of working memory
(Baddeley, 1986; Engle, 2002) has emerged to account for
a smaller ‘‘magic number’’ that Cowan (2001) estimated to
be 4 ± 1 on the basis of a wide variety of data.

Broadly speaking, the discrepancy between the two
capacity estimates seems to turn on whether the task setting
allows chunking (Cowan, 2001). Generally, four is the
capacity that has been observed when neither rehearsal
nor long-term memory can be used to combine stimulus
items (i.e., to chunk), while seven is the limit when chunking
is unrestricted. Hence the two limits might be fully recon-
ciled if only chunking were more completely understood.

Yet half a century after Miller’s article, the definition of a
chunk is still surprisingly tentative. Chunks have been
defined as groups of elements (Anderson & Matessa, 1997;
Bower & Winzenz, 1969; Cowan, 2010; Cowan, Chen, &
Rouder, 2004; Farrell, 2008; Hitch, Burgess, Towse, &
Culpin, 1996; Ng & Maybery, 2002; Ryan, 1969; Wickelgren,
1964), but exactly which groups remains unclear unless
they result from statistical learning (Perruchet & Pacton,
2006; Servan-Schreiber & Anderson, 1990). Cowan (2001)
defines a chunk as ‘‘a collection of concepts that have strong
associations to one another and much weaker associations
to other chunks concurrently in use’’ and Shiffrin and Nosof-
sky (1994) as ‘‘a pronounceable label that may be cycled
within short-term memory’’. Most attempts to define
chunks are somewhat vague, ad hoc, or severely limited in
scope, especially when they apply only to verbally encoded
material (Shiffrin & Nosofsky, 1994; Stark & Calfee, 1970),
making it difficult for them to explain the existence of
chunking-like processes in animal learning (Fountain &

Benson, 2006; Terrace, 1987, 2001). The current consensus
is that (1) the number seven estimates a capacity limit in
which chunking has not been eliminated (2) there is a prac-
tical difficulty in measuring chunks and how they can be
packed and unpacked into their constituents.

In this paper we propose a new conception of chunk for-
mation based on the idea of data compression. Any collec-
tion of data (such as items to be memorized) can be
faithfully represented in a variety of ways, some more
compact and parsimonious than others (Baum, 2004;
Wolff, 2003). The size of the most compressed (lossless)
representation that faithfully represents a particular se-
quence is a measure of its inherent randomness or com-
plexity, sometimes called its Kolmogorov complexity
(Kolmogorov, 1965; Li & Vitányi, 1997).

Simpler or more regular sets can be represented more
compactly by an encoding system that takes advantage of
their regularities, e.g. repetitions and symmetries. As an
upper bound, a maximally complex sequence of N items
will require about N slots to encode it, while at the other
extreme an extremely repetitive string may be compressed
into a form that is much smaller than the original string.
Incompressibility as a definition of subjective randomness
has some empirical support (Nickerson, 2002). Kolmogo-
rov complexity has a number of cognitive correlates
(Chater & Vitányi, 2003); for example simpler categories
are systematically easier to learn (Feldman, 2000; Pothos
& Chater, 2002).

In this paper, we ask whether complexity influences the
ease with which material can be committed to short-term
memory. Our hypothesis, that simpler material is more
easily memorized, follows directly from the fact that—by
definition—complexity determines the size of a maximally
compressed representation.

If so, the true limits on capacity depend on the size of
this compressed code, leading to our view that a ‘‘chunk’’
is really a unit in a maximally compressed code. The fol-
lowing experiments test this hypothesis by systematically

Fig. 1. The number of items that can be compressed into four ‘‘chunks’’ depends on the complexity of these material. Completely incompressible
(maximum Kolmogorov complexity) sequences (bottom) require one chunk per item. Sequences of moderate complexity (middle) might allow 7 items to be
compressed into 4 chunks, leading to an apparent digit span of 7. Highly patterned (regular) sequences might (top) allow even larger numbers of items to be
compressed into the same four slots.
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manipulating the complexity of material to be remem-
bered. In contrast to most memory tasks where chunking
is either unrestricted or deliberately suppressed, our goal
is to modulate it by systematically introducing sequential
patterns into the training materials.

If correct, this approach entails a new understanding of
the difference between the magic numbers four and seven.
To preview, our conclusion is that four is the true capacity
of STM in maximally compressed units; while Miller’s ma-
gic number seven refers to the length of an uncompressed
sequence of ‘‘typical’’ complexity—which, for reasons dis-
cussed below, has on average compression ratio of about
7:4 (e.g., second sequence in Fig. 1).

Note that our conception is not intended to replace
existing processing models of forgetting and remembering
in working memory (Jonides et al., 2008). Rather, our goal
is to develop a mathematically motivated model of chunks,
paving the way for a better quantification of working
memory capacity. Clearly, our model of chunking can and
should be integrated with processing accounts, though in
this paper we focus narrowly on the definition of chunk
and its consequences for measured capacity.

2. Experiment 1: Sequences with variable complexity

In Exp. 1, subjects were given an immediate serial list re-
call task in which 100 lists of digits were created by using
increasing or decreasing series of digits (runs) of variable
lengths and increments (step sizes). In a given list, the
increments were constant within chunks, but generally
varied between runs. For example, three runs (say, 1234,
864, 56), using three different increments (here 1, �2, and
1) would be concatenated to produce a single list
(123486456). Fig. 2 graphically illustrates the structure of

two such lists, one more complex (more shorter runs) and
one simpler (fewer longer runs). On each trial, the entire list
was presented sequentially to the subject at a pace of 1 s
per digit (without any indication of its division into runs).
The subject was asked to immediately recall as many digits
as possible in the order in which they were presented.

The length of the list was random (from 3 to 10), rather
than progressively increasing, to avoid confounding fatigue
or learning effects with task difficulty effects (and to avoid
other peculiar effects, see Conway et al., 2005, p. 773). We
used proportion correct as our dependent measure, focus-
ing on performance as a function of the number of runs as
well as the number of raw digits.

2.1. Method

2.1.1. Participants
Nine Rutgers University students and 39 Université de

Franche-Comté students received course credit in ex-
change for their participation.

2.1.2. Stimuli
The stimuli were displayed visually on a computer

screen. Each digit stimulus was about 3 cm wide and 4 cm
tall, presented in the middle of the screen at a pace of 1 s
per item, printed in a white Arial font against a black back-
ground. In a given list of digits, each digit replaced the pre-
vious one in the same spatial location. Each stimulus (i.e., a
list of digits) was composed of a maximum of 10 digits. The
stimuli were composed of monotonic series of constant
increments (runs). As explained above, the increments
were hold constant within runs but could vary between
them. Runs varied in length from 1 digit (meaning in effect
no run) to 5 digits. To construct each list, the number of
runs was drawn randomly from the range 1–10. For each

Fig. 2. Graphical depiction of sequence structure in two digit sequences, 12387654 (top) and 17254836 (bottom). The upper example contains two runs
(123–87654), and is thus relatively compressible, corresponding mentally to two ‘‘chunks.’’ The lower example is relatively erratic, containing no apparent
runs at all, and as a result is approximately incompressible, requiring approximately 8 chunks to encode the 8 digits.
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run, the first digit, the increment (1, 2, or 3), and the sign of
the increment (+ or�) were chosen randomly. If the first di-
git did not allowed the series to go all the way, the run was
terminated where it could end. For instance, if ‘‘3’’ was cho-
sen as the first digit of a chunk, and if ‘‘�1’’ was chosen as
the increment, the length of the chunk was limited to 3.
Had the increment been ‘‘�2’’, the length of the chunk
would have been limited to 2, and so on. Therefore, in this
experiment, the number of digits per run (mean 2.8) was
generally less than the expected value of 3.

At the end of the first run, the next run was drawn, and
so forth, as long as the series did not go beyond 10 digits.

Using this technique, the expected value of the num-
ber of runs was 3.6, a value of particular interest given
the discussion above.

2.2. Procedure

Each experimental session lasted approximately half an
hour and included a maximum of 100 separate stimulus
lists. Subjects were not given any special indications con-
cerning the presence of monotonic sequences. After the pre-
sentation of the last digit of a given list, subjects could enter
their response on a keyboard. The subjects were instructed
to recall the digits in order. The successive digits entered
by subjects were displayed in pink ink (1 cm wide and
1.5 cm tall Arial letters) and placed side by side forming a
single row from the subject’s left to right. The subjects could
read their response to make sure the list they entered was
what they intended. Once their response confirmed by a
press of the space bar, they were presented with the next list.

Fig. 3. Mean proportion of sequences correctly recalled (Exp. 1) as a function of (a) the number of digits and (b) the number or runs in the stimulus
sequence. Error bars indicate ±s.e.
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No feedback was given to subjects, but the subjects
were debriefed and offered a chance to look at their data-
file by the end of the experiment.

2.3. Results

All 48 subjects were included in the analysis. Seventy-
seven percent of the subjects completed at least 95% of
the 100 trials.2

Figs. 3a and b show performance as a function of the
number of digits and runs respectively. The number of dig-
its and the number of runs are, obviously, not independent
of each other, and the plots show that performance stea-
dily deteriorates with both. The decline has a more expo-
nential form (the functional form one would expect in
this situation; see Crannell & Parrish, 1957) with runs than
with digits (for digits R2 = .51, SSE = 35.64, RMSE = .277; for
runs: R2 = .69 SSE = 14.22, RMSE = .198, when both are
fitted by an exponential decay function). The difference
between the two correlations is significant, with z = 4.2,
p < .001.

Mean memory span (integral under the performance
curve) was about 6.4 digits or 2.8 chunks, consistent with
both classical limits.3 Likewise, analysis of the rate of de-
cline in performance shows that subjects’ performance falls
below 50% at about 3 runs or 7 digits, corroborating the
usual limits. Odds ratios (ratio of likelihood of recollection
at n against n � 1) at 7 digits and 3 runs are respectively
2.05 and 1.57.

Fig. 4 shows more clearly how digits and runs contrib-
ute independently to performance. The plot shows the
influence of the number of runs, broken down by the num-
ber of digits, indicating (for sequences longer than six dig-
its) a steady decline in performance as sequences get more
complex (more runs in the same number of digits). For
each fixed number of digits, performance tends to decline
with increasing number of runs (i.e. more numerous short-
er runs, making a more complex sequence). The decline is
separately significant by linear regression4 for N digits = 7,
8, 9, and 10 (details in Table 1). This confirms that even
when the length of the sequence is held constant, more
complex or erratic sequences (more runs within the same
number of digits) are harder to recall. The fact that increas-
ing the number of runs in 5- and 6-digit sequences does not
lead to worse performance might confirm MacGregor’s

(1987) suggestion that chunking is beneficial only when
the number of items is above capacity. In that respect, the
fact that many of our 4-, 5-, or 6-digit sequences reduced
to a similar low number of chunks (for instance, respec-
tively, four 1-digit chunks, three 1-digit chunks and one 2-
digit chunk, and, for instance, three 2-digit chunks) can ac-
count for why most of these short sequences do not lead
to a sufficiently high load to degrade performance.

In Fig. 4, a pure effect of digits would appear as vertical
separation between the individual —horizontal— curves; a
pure effect of chunks would appear as a decreasing trend
within each curve, with curves overlapping. Accordingly,
in addition to the decreased performance observed with
runs, Fig. 4 shows a very large digits effect. However, the
dependent measure used in this figure is a coarse measure
of performance, scoring 0 for trials that were not recalled
correctly, regardless of how closely the recalled string
actually matched the stimulus.

We also attempted a more accurate evaluation of per-
formance given the number of chunks, based on the pro-
portion of digits recalled, by giving ‘‘partial credit’’ for
sequences recalled. To evaluate performance in a more
graded and more informative manner, we used a sequence
alignment method (Mathy & Varré, submitted for publica-
tion) in order to compute the actual number of digits that
were recalled in correct order for each sequence,5 irrespec-
tive of response accuracy (a dependent measure previously
used by Chen & Cowan, 2009). For example, given the se-
quence 12345321, a response of 1234321 would be scored
as seven digits correct out of eight rather than 0 as in a con-
ventional accuracy score.6 With this less coarse measure, we
expected to obtain more overlapping curves showing that
subjects had greatly benefited from the reduced memory
load conferred by more compressible sequences. The actual
number of digits recalled in correct order plotted as a func-
tion of the number of runs, broken down by the number of
digits is shown in Fig. 5. To better estimate the effect of
regularity on performance, we tried to maximize the chance
of having a larger coefficient for runs than for digits in the

2 Each experimental session was limited to half an hour and included at
most 100 separate stimulus lists. Certain participants did not have
sufficient time to finish the experiment. In the absence of cues from the
screen on the number of lists already completed, the experimenter was
unable to know that a participant was, for instance, one or a couple of trials
short of finishing the experiment (this is the reason why sometimes, in our
experiments, the total number of trials is very close to the maximum; there
was no cut-off in the data).

3 Scoring is fundamental, but the choice of scoring procedures can
change the estimates for a given task (St Clair-Thompson & Sykes, 2010).
See Conway et al. (2005, pp. 774–775), who compare four basing scoring
procedures; some examples are given by Cowan (2001, p. 100); see also
Martin (1978), in the context of immediate free recall. Note that integrating
under the performance curve (Brown, Neath, & Chater, 2007; Murdock,
1962) corresponds to an all-or-nothing unit scoring (Conway et al., 2005).

4 We use linear regression as a simple test for declining performance.
Tests for exponential declines revealed the same pattern of significance.

5 The nwalign function of the MATLAB Bioinformatics Toolbox used for
the analysis is based on the Levenshtein distance (i.e., the minimum
number of operations needed to transform one string into another, with the
allowable operations being deletion, substitution, or insertion), except that
nwalign allows to test different costs for the different operations (for
instance, allowing to set an insertion operation as less probable than a
simple deletion). This sequence alignment method is particularly useful
when repetition is allowed in the stimuli. For instance, given a list
321.24.2345 (the chunks are separated by a dot symbol) and a response
3212345, the computation of the alignment ‘jjj⁄⁄jjjj’ between the two
sequences clearly indicates that the 4th and 5th items are omitted in the
subject’s response (the other digits are aligned). Without such a technique,
it is difficult to know which of the three ‘2’ digits have been recalled in
correct order. Consider another hypothetical response 32123452: in that
case, the last ‘2’ digit would not be considered as a digit correctly recalled in
order since it cannot be aligned with a digit in the stimulus list. Given that
permutation rates are low (Henson, Norris, Page, & Baddeley, 1996; Mathy
& Varré, submitted for publication), we focused on a basic algorithm run
with default parameters (i.e., to compute a Levenshtein distance), in view of
searching for omissions, confusions, and insertions.

6 This method meshes nicely with the idea that a Kolmogorov distance
can be computed between two objects (Hahn, Chater, & Richardson, 2003).
The simpler the transformation distorting the stimulus to the response, the
more similar they are.
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multiple regression analysis. With that goal in mind, we re-
moved the data at sub-span level that naturally showed
nearly ceiling performance (where the number of digits
was less than 7), and we averaged across conditions where
the number of chunks was greater than 5 (to group less
numerous data). In that condition, we again obtained four
significant linear regressions for the curves ranging from
nDigits = 7 to nDigits = 10 (respectively, r = �.15, r = �.15,
r = �.21, and r = �.10). However, the multiple linear regres-
sion analysis showed that performance did not solely de-
pend on the number of runs, with the number of digits
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Fig. 4. Mean proportion of sequences correctly recalled as a function of the number of runs per stimulus sequence, broken down by the number of digits per
stimulus sequence. For sufficiently long runs (>6), the plot shows a substantial decreasing trend. This shows how the number of runs contributes to memory
load in a way that is distinct from the contribution of the number of digits. A sequence of a given length is more difficult to remember if it has more distinct
runs, which increases its complexity and decreases it compressibility.

Table 1
Statistics for declines in performance as a function of runs, broken down by
the number of digits (Exp. 1).

N digits r p N sequences

3 .01 .921 98
4 .10 .291 115
5 �.03 .791 99
6 �.05 .547 165
7 �.37 <.001 137
8 �.23 .001 219
9 �.14 .028 247

10 �.19 .002 276

Fig. 5. Mean proportion of digits (Exp. 1) recalled per sequence as a function of the number of runs per sequence, broken down by the number of digits per
sequence. The plot only shows the curves having a significant negative slope (the other curves at sub-span level showed nearly ceiling performance). Error
bars indicate ±one standard error.
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having again a greater influence on performance than the
number of chunks (bnDigits = �.255, p < .001; bnRuns = �.122,
p < .001; F(2,3111) = 175, R2 = .10, p < .001).

2.3.1. Quantifying complexity
We can quantify the complexity of each digit string by

considering how much memory space its component runs
would actually require to encode, given their length. Each
string of length N consists of K runs (numbered i = 1 . . .K),
with the i-th run having length Li. For example the string
12387654 illustrated in Fig. 2 (top) has K = 2 (two runs)
with L1 = 3 and L2 = 5. The memory space required to en-
code a number N is generally proportional to log (N), with
the units determined by the base of the log (see Cover &
Thomas, 1991). For example, the number of decimal digits
required to express a number N is about log10 N digits (the
number 10 requires 2 decimal digits, 100 requires 3, 1000
requires 4, and so on), while in base 2 the number of bits
required is proportional to log2 N. We usually use base 2
and thus bits. So the representation of each digit string will
have length about

complexity ¼
XK

i¼1

log2ð1þ LiÞ; ð1Þ

which sums up the space required over all the component
runs, i.e. their aggregate complexity. (We add one to each
length so that singletons [‘‘runs’’ of length 1] have nonzero
minimum complexity of log2 2 = 1 bit.) Our goal was to
choose the simplest formulation that could account for
both the variations in the number of chunks and the num-
ber of digits to which the runs were subject to. This for-
mula admittedly oversimplifies the situation a bit,
because it ignores the ‘‘overhead’’ involved in encoding
the decompression routine itself (e.g. the ‘‘for. . . end’’
structure implicit in the expression of a run), which con-
tributes a constant amount of complexity. But it approxi-
mates the space required to express the variable
parameters in the run structure, which make a contribu-
tion which increases as the runs get longer. In our se-
quences these include the number of runs (K) and the
length of each run (Li). So the complexity measure should
be understood as an approximation of the amount of infor-
mation required to encode the runs within the sequences
we created. Also, a choice was deliberately made not to
fully develop a Minimum Description Length (MDL) which
work best with situations where the to-be-recoded pat-
terns can be assigned a probability value (Perlman, Pothos,
Edwards, & Tzelgov, 2010; Robinet & Lemaire, 2009; Ser-
van-Schreiber & Anderson, 1990). The MDL approach that
more thoroughly takes into account the probabilities of
various patterns could probably lead to a superior general-
ization of our approach, sharing the same idea that storage
capacity relates to maximal effective compression.

We admit that this simple formulation is not completely
general, but rather is tailored to the specific class of digit se-
quences that were used in our experiments. Our formula for
example neglects the possibility of increments of 0 (leading
to repeated digits) or systematically changing increments
(leading to nonlinear runs), which were not included in
our experimental materials. Such patterns would require a

more elaborate complexity metric because they involve
additional parameters, which must be encoded.7 Nor is our
measure intended to encompass broader classes of patterns
as might apply to items other than digits. A completely general
complexity measure, i.e. one that encompasses any kind of
pattern at all, would be Kolmogorov complexity itself, which
is not actually computable (see Schöning & Pruim, 1998). In
practice, any computable complexity measure only reflects
the compression possible given the patterns within its scope,
and the more pattern classes are entertained, the more
parameters must be included. Our formulation aims to
encompass only the limited set of regularities possible in
the runs we included in our experiments, and the parameters
(number and length of runs) that are required to encode
them.8

Fig. 6 shows memory performance as a function of com-
plexity. The plot shows a dramatic fall-off in performance
for digits strings above about 4 compressed units
(R2 = .98 using a sigmoid function). Digit strings that are
short enough and/or regular enough to be compressed into
this size are easily accommodated in available memory
space, while longer and/or more complex ones are not. This
finding encapsulates our claim that ‘‘chunks’’ are best
understood as units in a compressed code. It is the length
of such a code, quantified by Eq. (1), that most directly
determines whether a particular sequence can be squeezed
into available memory space.

We also tried a more complex formula for complexity in
which the length, the increment, and the starting point of
the runs are all taken into account,

PK
i¼1½log2ð1þ LiÞþ

log2ð1þ IncriÞ þ log2ð1þ StartiÞ�. This leads to a lower por-
tion of explained variance (R2 = .96), but usefully reveals
that recall is about perfect for 10 bits, about 50% correct
for 20 bits, and about null for 40 bits. This 10 bit limitation
is similar to the one found by Brady et al. (2009).

2.4. Discussion

Our results show that the compressibility of a string, re-
flected in its regularity and redundancy, exerts a measurable
influence on subjects’ ability to remember it. While longer
sequences are, on average, more difficult to remember, sim-
plicity of pattern within the string wields an independent
influence. When the number of digits is held constant, sim-
pler strings (fewer longer runs) are easier to remember,
while more complex strings (more numerous short runs)
are harder. The complexity of the string, which expresses
how much memory space is required to encode it when

7 For example, the pseudo-code ‘‘x = 1; Print x; For i = 1:3, x = x + 2 Print
x; End’’ generates 1357. However, a more complicated algorithm is
necessary to make the increment vary as a function of the loop index in
order to generate 1247 (i.e., ‘‘x = 1; For i = 1:4, x = x + i � 1 Print x; End’’).
The second procedure uses the index i twice instead of once, requiring more
space to encode.

8 To support the idea that the evaluation of compression is material-
specific, one of the present authors (F. M.) has run experiments in which the
participants were required to memorize and recall sequences of categor-
izable multi-dimensional stimuli (that is, objects with possible associations
between them). In this latter case, compression was better accounted for by
the length of the shortest algorithm made of If-Then structures instead of
simple loops (Chekaf & Mathy, submitted for publication).
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maximally compressed, determines the success of memory
processes.

In summary, Exp. 1 demonstrated a systematic relation-
ship between capacity and compression in patterns with
moderate but variable complexity.

Consequently, our nonstandard chunking memory task
enables us to recover two different well-known estimates
of the span: about 3 chunks and 7 unpacked items. Unfor-
tunately, our observation is weakened by the fact that the
number of digits in a sequence prevailed over the number
of chunks. A first explanation is that chunks are not im-
mune to disturbance; a second is that our subjects were
simply not able to notice the regularities in the sequences
and therefore failed to encode the runs. Exp. 2 was carried
out to make subjects better encode the chunks in order to
let the number of chunks override the number of digits.

3. Experiment 2: Sequences with variable complexity

Because there is a possibility that the participants in
Exp. 1 could not benefit from stimulus regularity (either
because they did not notice the runs, or because they had
difficulties encoding them), we devised a new chunking
memory span task designed to offer every possible way
for subjects to both notice and encode the same regulari-
ties that were available in Exp. 1.

3.1. Method

3.1.1. Participants
Twenty-three Université de Franche-Comté students re-

ceived course credit in exchange for their participation.

3.1.2. Procedure
Exp. 2 was identical to Exp. 1 except that the presenta-

tion of the stimuli was not sequential. A similar procedure

was used by O’Shea and Clegg (2006), in which the digits
to be chunked were not presented individually in order to
induce optimal recall performance (for instance, a partici-
pant would view three digits for 3 s, followed by three other
digits, etc.). In our experiment, all the digits of a given trial
were simultaneously shown on the screen during a time
proportional to the number of digits (one second per digit).
Whenever a new chunk was built by the program, the digits
were located on a new line. The runs could therefore easily
be identified by their location.The number of lines simply
reflected the number of runs in a list. The participants were
instructed that each line would correspond to a regularity
found by the computer, to facilitate their task. The experi-
menter then proceeded to a demonstration on how the dig-
its should be read, and emphasized that the digits had to be
read from left to right, and from top to bottom to benefit
from the facilitation introduced in the task. The experimen-
tal setting was optimized to simplify the memorization
process in that the participants could use both verbal and
visual information to chunk the digits that were displayed
at once. The participants were given a list of 100 trials,
but the experiment was again limited to half an hour.

3.2. Results

All 23 subjects were included in the analysis. As shown
in Fig. 7, both the mean number of chunks and the mean
number of digits recalled were superior to those of Exp. 1
(chunk and digit span were respectively 4.0 and 7.9 by inte-
grating under the performance curve). Analysis of the rate
of decline in performance showed that subjects’ perfor-
mance fell below 50% at about 4 runs and 8 digits. Fig. 8
shows how digits and runs contributed to performance,
when the actual number of digits recalled in correct order
for each list was computed using the alignment method al-
ready applied to the data in Exp. 1. To follow the analysis

Fig. 6. Plot of performance (Exp. 1) as a function of the complexity (size after compression) of the digit string, computed from Eq. (1). The plot shows an
abrupt decline in performance when complexity exceeds about 3 or 4 units of complexity (chunks). Each data point results from the mean complexity and
the mean proportion correct that were computed for each cell of a nDigits � nChunks matrix.
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conducted in Exp.1, we removed the conditions at sub-di-
git-span level to avoid ceiling performance (where the
number of digits was less than 8), and the conditions where
the number of chunks was greater than 5 were again aver-
aged (to gather less numerous data). The main result is that,
contrary to Exp. 1, the number of chunks now had a greater
influence on performance than the number of digits in the
multiple regression analysis, a result that is clearly visible
in Fig. 8 which shows more closely spaced curves than in
Fig. 5 (bnDigits = �.190, p < .001; bnRuns = �.219, p < .001;
F(2,1285) = 78, R2 = .11, p < .001; the three regression lines
as a function of the number of runs were all significant:
respectively F(1,272) = 7.5, p = .01, bnRuns = �.164, for
nRuns = 8; F(1,411) = 9.5, p = .01, bnRuns = �.150, for nRuns
= 9; F(1,599) = 53, p = .001, bnRuns = �.285, for nRuns = 10).

Fig. 9 shows memory performance as a function of
complexity. The plot indicates that performance decreases

for digits strings above about 4 compressed units (R2 = .97
using a sigmoid function). As in Exp. 1, using the more
complex formula

PK
i¼1½log2ð1þ LiÞ þ log2ð1þ IncriÞ þ log2

ð1þ StartiÞ� leads to a lower portion of explained variance
(R2 = .87), but again reveals that recall is about perfect for
10 bits, about 50% correct for 20 bits, and about null for
40 bits. This 10 bit limitation is similar to the one found
by Brady et al. (2009).

In a final analysis, we again took advantage of the align-
ment found between the stimulus sequence and the re-
sponse in order to compute the actual number of chunks
that were correctly recalled for each sequence, irrespective
of response accuracy. Let us give an example of how useful
a correct alignment between the list and the response is,
particularly when digits are repeated (when there is no rep-
etition in the material, a simple search function can be used
to recover which of the items are correctly recalled). The

Fig. 7. Mean proportion of sequences correctly recalled (Exp. 2) as a function of (a) the number of digits per sequence and (b) the number or runs per
sequence. Error bars indicate ±s.e.

354 F. Mathy, J. Feldman / Cognition 122 (2012) 346–362



Author's personal copy

computation of the alignment is particularly helpful to
avoid assigning correct recall to one chunk incorrectly
(false alarm) and to fail to credit a chunk not strictly re-
called at the expected position but nevertheless entirely re-
called. For instance, given a 123.2.432 stimulus, and a
123.432 response, the alignment ‘jjj⁄jjj’ signals the omission
of the ‘2’ digit/chunk in the middle of the sequence, the cor-
rect recall of ‘123’ at correct positions, and the correct recall
of ‘432’ at lower positions than expected. The recall of the
chunks was computed in order, beginning with ‘123’, and
so on. Once ‘123’ credited, it could be removed from the
subsequent search function. Then, when searching for the
‘2’ one-digit chunk, the algorithm encountered an omission
symbol which was associated with incorrect recall. Because
the search function followed the alignment, the ‘2’ digit

could not be wrongly associated with the one present in
the ‘432’ chunk. The resulting estimation of the number
of correctly recalled chunks for this example is 2. This
method is not without difficulties (Mathy & Varré, submit-
ted for publication), but to the best of our knowledge, it is
the best method available to estimate the number of
chunks correctly recalled in order with such complex mate-
rial, regardless of the strict position of the digits recalled in
the subject’s response.

Fig. 10 indicates the number of chunks that were actually
encoded as a function of the number of chunks in the list. The
figure shows a logarithmic performance with asymptote of
about 4 chunks, R2 = .99 (N = 7), p < .001, y = .838 + 1.7 �
ln(x). By comparison, the number of encoded stimuli in the
first experiment was systematically lower, t(6) = 3.88,

Fig. 9. Plot of performance (Exp. 2) as a function of the complexity (size after compression) of the digit string, computed from Eq. (1). The plot shows an
abrupt decline in performance when complexity exceeds about 4 units of complexity (chunks). Each data point results from the mean complexity and the
mean proportion correct that were computed for each cell of a nDigits � nChunks matrix.

Fig. 8. Mean proportion of digits (Exp. 2) recalled per sequence as a function of the number of runs per sequence, broken down by the number of digits per
sequence. The plot only shows the curves which have a significant negative slope (the other curves were at sub-span level). Error bars indicate ±one
standard error.
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p < .01, which tends to confirm that subjects had more diffi-
culties encoding the runs in the first experiment.

A final point relating to encoding processes concerns
the sensitivity of our participants to the type of increment
within runs. A mean proportion correct was first computed
across subjects for the six sorts of increments
(�3,�2,�1,+1,+2,+3), from which we obtained the respec-
tive means: .69, .74, .78, .77, .75, .76. Three different ANO-
VAs with the within-subject factor being Increment Type
were carried out on proportion correct, after we removed
the data that included one-digit long chunks. We observed
neither a significant effect of the increments
(�3,�2,�1,+1,+2,+3), F(5,110) = 1.99, p = .08, nor a signif-
icant effect of the sign of the increment (+i vs. �i),
F(1,22) = .06, p = .81. However, we observed a significant
effect when the absolute value of the increments were ta-
ken as the independent variable (respectively, .78, .75, and
.73 for 1, 2, and 3), F(2,44) = 4.07, p = .02.

3.3. Discussion

Our second experiment allowed us to recover the usual
estimate of the span: about 4 chunks, although this time
the number of unpacked items surpassed the magical
number 7. Because this experiment was carried out to
make participants better encode the chunks than in Exper-
iment 1, the number of chunks this time prevailed over the
number of digits at supra-span level. Exp. 3 tests the limits
of this phenomenon by using much higher levels of regu-
larity (longer runs) in the sequences, which in principle
should yield more compressible sequences and thus higher
apparent capacity.

4. Experiment 3: Highly regular sequences

Our argument suggest that it ought to be possible to
greatly inflate apparent memory capacity by using more

regular (less complex) material, and indeed that with suf-
ficiently regular sequences the 7 ± 2 limit should effec-
tively vanish. To test this prediction, in Exp. 3 we use
highly regular sequences with relatively long runs. If our
account is correct this should yield more chunking and
thus larger apparent capacity, though still corresponding
to the same compressed size and the same actual memory
capacity.

4.1. Method

Exp. 3 was identical to Exp. 1 except that runs were
fixed to 4 digits in length (with constant increments equal
to 1 or �1), and we simply varied the number of runs per
sequence. Following the more classic procedure of Exp. 1,
the presentation was sequential.

4.1.1. Participants
Thirty-two (new) Université de Franche-Comté students

received course credit in exchange for their participation.

4.1.2. Procedure
The procedure was similar to Experiment 1, except that

the number of digits per run was set to 4 and the incre-
ments could only take two values (+1 or �1) to facilitate
the encoding process. The number of runs was randomly
drawn from the range 2–5 (inclusive). For example, a trial
with 3 runs and respective increments of +1, �1, �1 might
yield the sequence 123487657654.

4.2. Results and discussion

Fig. 11 shows the proportion correct as a function of the
number of runs and digits in the sequence. (In this experi-
ment the number of digits is always four times the number
of runs, so the plot shows the abscissas for digits at the
bottom and runs at the top.) When analyzed in terms of

Fig. 10. Number of chunks correctly recalled (Exp. 2) as a function of the number of chunks per sequence. Error bars indicate ±one standard error.
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raw digits, performance greatly exceeds that in Exp. 1. In
Exp. 1, performance had crossed the 50% line at about 7 dig-
its (Fig. 3a) or 3 runs (Fig. 3b), corresponding respectively to
Miller’s and Cowan’s magic numbers. Here in Exp. 3, perfor-
mance again crosses that same threshold at about three
runs—but with the higher compression ratio this now corre-
sponds to 12 digits rather than 7. Raw digit span was now
10.2 digits (compared to 6.4 digits in Exp. 1) while ‘‘chunk
span’’ was 2.5 runs (similar to though actually slightly lower
than the 2.8 found in Exp. 1). Also, we found that 1.7
(sd = .02), 2.3 (sd = .04), 2.7 (sd = .05), and 2.9 (sd = .07)
chunks were correctly recalled on average, for a number of
chunks respectively equal to 2, 3, 4, and 5 in the stimulus
sequence.

These results shows very clearly how the two magic
numbers can be deconfounded when compressibility is
ratcheted up. As discussed above, the historical conflation
between these two benchmarks depends on an approxi-
mately 7:4 compression ratio typical of random strings
but violated in the current experiment.9 With more com-
pressible material, while capacity in chunks remains the
same, digit spans can grow substantially. Our Exp. 3 subjects
were still exceeding 25% correct with sequences of 16 digit
in length, performance that would certainly be impossible
with completely random sequences.

5. General discussion

This study questions whether working memory and
short term memory are different constructs relating to sep-
arate capacities of 4 and 7 (Unsworth & Engle, 2007). Our
results suggest that memory involves a kind of reflexive
data compression, whereby material to be encoded is auto-
matically analyzed for structure and redundancy, and com-
pressed as much as each pattern allows. Chunks in this
account correspond to elements of a maximally com-
pressed encoding. An immediate consequence, confirmed
in our experiments, is that more compressible material is
easier to fit into available encoding space, and less com-
pressible (more complex) material is harder. This observa-
tion leads to our main conclusion: that the memorability
of a sequence depends at least in part on its complexity
or incompressibility. This conception compares very clo-
sely with common computer data compression techniques
such as Lempel–Ziv (e.g. see Ziv & Lempel, 1977), which
underlies the widespread compression utility gzip. The
Lempel–Ziv algorithm searches for repeated blocks of data,
builds a table of such blocks, and then recodes the original
data sequences using symbolic references to the table. We
believe that our results can add to other related findings,
such as the effect of chunks on task inhibition (Koch,
Philipp, & Gade, 2006), the growth of chunk capacity with
age (Burtis, 1982; Cowan et al., 2010; Gilchrist, Cowan, &
Naveh-Benjamin, 2009) the relationships between long-
term memory and working-memory spans (Ericsson &

Fig. 11. Mean proportion correct (Exp. 3) as a function of the number of runs (upper abscissa) or digits (lower abscissa). Note that in this experiment all
runs were 4 digits long, so the graph shows performance with respect to both. Error bars indicate ±one standard error.

9 The 7:4 ratio only applies to material that would show the same ratio of
compressibility. Other random sequences such as those resulting from
bernoulli trials (e.g., sequences of 0s and 1s) would probably show other
ratios. However, we argue that 4 is a constant reflecting capacity.
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Kintsch, 1995; Logan, 2004), the role of chunking in per-
ception (Suge & Okanoya, 2010) or in skill acquisition (Co-
hen & Sekuler, 2010), the spontaneous organization of
sequences by participants (Li, Blair, & Chow, 2010), chunk-
ing in dyslexia (De Kleine & Verwey, 2009), and chunking
in spatial memory (Gmeindl, Walsh, & Courtney, 2011;
Sargent, Dopkins, Philbeck, & Chichka, 2010). One advan-
tage of our chunking memory span tasks is the study of
various chunk sizes, in contrast to other studies in which
chunking was restricted to pairs or triplets (Burtis, 1982;
Chen & Cowan, 2009; Cowan et al., 2004; De Kleine & Ver-
wey, 2009; Li et al., 2010; O’Shea & Clegg, 2006).

This conclusion allows the capacity of short-term mem-
ory to be restated as a very simple ‘‘law:’’ the material that
can be stored in the short-term buffer always has Kolmogo-
rov complexity of about 3 or 4 units. The apparent capacity,
meaning the number of raw (uncompressed) items, de-
pends on the compressibility of the material. But when
compressed, it must occupy at most about 3 or 4 units of
space in order to be retained. Our estimation relies on dif-
ferent scoring criteria: (Conway et al., 2005)’s all-or-noth-
ing scoring (which amounts to integrating under the
performance curve), recall achieved 50 % of the time
(which does not correspond to Broadbent’s (1975) view
that a 3 or 4 capacity limit relates to perfect recall), and
on the computation of the actual number of chunks cor-
rectly encoded irrespective of response accuracy (in Exp.
2; see Fig. 10).

Naturally, subjects are not perfect encoders and our
theory does not intend to account for the heterogeneous
error patterns in memory that are generally observed
(omissions, confusions, transpositions, insertions; Brown,
Preece, & Hulme, 2000; Farrell & Lewandowsky, 2002;
Henson, 1998; Henson et al., 1996; Maylor, Vousden, &
Brown, 1999; McCormack, Brown, Vousden, & Henson,
2000), not to mention some complex mechanisms such
as response suppression during recall (Lewandowsky,
1999), redintegration processes (Roodenrys & Miller,
2008), and transposition gradients (Brown et al., 2000).
Our conception is perhaps entirely compatible with certain
serial order models which have been refined for years (e.g.,
Brown et al., 2000; Estes, 1972; Lewandowsky & Murdock,
1989; Page & Norris, 1998), which consider for instance
that recall functions by position-item associations or by
means of chains of item-item associations. These models
might be able to account for the dramatic decrease of per-
formance with list length in Fig. 4, which tends to show
that there are other strong determinants of memory per-
formance beyond chunking processes.

One can note that our complexity measure gives a high-
er count for patterns that are longer (for example, the
string 1234512345 has a greater complexity than the
string 123123), which seems to go counter the idea that
both strings are made of two chunks. This idea is neverthe-
less entirely compatible with the formalization of com-
pression in computer science: two optimized programs of
equivalent size (with equivalent Kolmogorov complexity)
can nevertheless have different logical depths. Logical
depth represents the time taken to calculate the results
of a program of minimal length and is thus a combination
of computational complexity and Kolmogorov complexity

(Bennett, 1995). Two programs that may therefore have
equivalent lengths will not necessarily have equivalent
complexity. For instance, a program that generates the va-
lue of p is very short, although it can run for ages. In this
view, the complexity of one chunk is not totally indepen-
dent of the decompression time. An example is one partic-
ipant who gave a 987.1.4567 response for a 987.1.45678
stimulus sequence. This might also account in part for
the decrease of the proportion correct with list length in
Fig. 4. We believe that future modeling of the compressibil-
ity in the to-be-learned material will need such elaborated
conceptions of complexity in order to better account for
the mechanisms that might take place in chunk formation
and chunk recall.

Still, the level of performance depends heavily on com-
pression, reaching a breaking point at about 4. This result
parallels other arguments that relate capacity limits to
optimization processes (Cabrera, 1995; Dirlam, 1972; Mac-
Gregor, 1987). Our phrase ‘‘maximally compressed code’’ is
intended to serve as an ideal definition with a clear moti-
vation, but in practice chunk structure will depend on
the compression actually achieved. In this paper, we at-
tempt to give an account of human chunk formation based
on the assumption that the structure of the environment
can be compressed optimally, but this goal can be impeded
by many obstacles (limits in rationality such as not being
able to reverse-engineer the Fibonacci sequence, interfer-
ences and decay in phonological recoding, etc.), some of
the obstacles being intricately related to the incomputabil-
ity of Kolmogorov complexity. Any real compression sys-
tem, after all, including Lempel–Ziv, will miss regularities
it does not understand.

The main contribution of this paper is to shed light on
how compression relates to capacity, and this contribution
is clearly in line with other recent research (Brady et al.,
2009). The present proposal can be applicable to verbal
chunks, by considering that compression is achieved by
the use of pointers to LTM content or by the use of chunk’s
first words as indices of over-learned word associations
(Chen & Cowan, 2009; Cowan et al., 2004), and to visual
material for which compression can be achieved by clus-
tering items by proximity in tasks such as matrix recall
or corsi blocks (since subjects can take profit of accidental
regularities; see Gmeindl et al., 2011). Although we tar-
geted a precise (i.e., quantitative) evaluation of how
chunks are built using information that can easily been re-
coded without necessarily relying on specific long-term-
memory knowledge, our conception is not incompatible
with other processes more directly implying long-term-
memory. For more specific material, the compressibility
can also depend on long-term-memory knowledge that
can help organizing or grouping the input into familiar
units, a process that recalls the original definition of a
chunk (e.g., relabeling the letters of the alphabet by the
word ‘‘alphabet’’), although this way of characterizing the
chunks as unique ‘‘pointers’’ is more straightforward.

5.1. The distribution of complexity in random sequences

Our approach allows the capacity of working memory
to be understood in a more mathematically rich way, a
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benefit we illustrate by briefly elaborating on several
quantitative relationships.

Our argument is that Miller’s magical number 7 is
essentially an artifact of statistically typical compression
ratios. That is, random sequences (as were typical of the
studies on which Miller based his estimate) randomly con-
tain some number of accidental patterns which result in
chunking and thus compressed representations (Feldman,
2004). More specifically, each successive item in the se-
quence (after the first) will accidentally continue a pattern
established by the previous item or items with some fixed
probability �. With our monotonic runs the probability of
any given run continuing by accident is about � = 1/10, be-
cause each class of runs (e.g. +1, +2, +3,�1, �2, or�3 incre-
ments) can be continued only by one specific digit. For
example the run 23 can only be continued by a 4. (In fact
� is slightly less than 1/10, actually about 0.085, because
runs cannot be continued past limits of 0 and 9, which re-
duces the possible continuations.) There are R disjoint clas-
ses of patterns (in our case R = 6). Each successive digit
initiates a new chunk unless it accidentally continues a pat-
tern, so the expected number of runs is N minus the ex-
pected number of accidental pattern continuations.

The number of accidental pattern continuations is in ef-
fect the number of successes on (N � 1) independent tosses
of an �-weighted coin (a Bernoulli sequence), which means
that the total number of pattern continuations will follow a
binomial distribution with mean �R(N � 1) and variance
�(1 � �)R(N � 1). So the expected complexity (number of
resulting chunks) will be binomially distributed with mean
(expectation)

EðcomplexityÞ ¼ N � �RðN � 1Þ; ð2Þ

and variance �(1 � �)R(N � 1). The expected compression
ratio will be

Eðcompression ratioÞ ¼ N
EðcomplexityÞ ; ð3Þ

which with values � = .085, R = 6 and N = 7 equals 1.78—not
far from the 7/4(=1.75) ratio between Miller’s number and
Cowan’s. This analysis is admittedly approximate, but it
illustrates that for moderately probable accidental patterns
and moderately long sequences, the expected number of
chunks in a random pattern is roughly consistent with
our account.

Finally, we can invert this reasoning to consider the dis-
tribution of raw pattern length that compresses to a fixed
complexity, say 4 chunks. That is, how long on average
are the random strings that happen to be just long enough
(and complex enough) to compress to 4 units? Technically,
this is the marginal distribution of raw pattern length con-
ditioned on complexity = 4, which (because the binomial is
a conjugate family) will also be binomial but with standard
deviation expanded by the compression ratio. With values
given above the variance of complexity is about 2.8, mean-
ing that the standard deviation is about

ffiffiffiffiffiffiffi
2:8
p

or 1.67
chunks, which decompresses to about 2.97 raw digits in
the uncompressed string. That is, the distribution of strings
that compress to four chunks have lengths that follow a
binomial distribution with mean about 7 and standard

deviation about 3—echoing (though not quite matching)
Miller’s 7 ± 2. So our account gives an explanation not only
of Miller’s mean value but also, very roughly, of its spread.
In other words, digit span has a random distribution (7 ± 2)
because compressibility has a random distribution, stem-
ming from the accidental patterns that occur in randomly
chosen strings.

5.2. The role of phonological rehearsal

Considering that the to-be-remembered material is par-
tially compressed using verbal information (verbal infor-
mation can naturally support the recoding of the runs
into shorter descriptions), the compressed verbal informa-
tion probably shortens the pronunciation of the original
list (for instance, 1–9, instead of 123456789), a process
that should facilitate recall in a way that is parallel to the
pure algorithmic compressibility that is manipulated here.
Conversely, new kinds of verbal interference/acoustic con-
fusion can probably occur during this verbal recoding pro-
cess, as well as during the rehearsal and the recall phases,
because of proper articulation constraints and auditory
representations. Therefore, the more a sequence can be
potentially redescribed, the more phonological confusion
effects can arise. Hence this relates to a major debate in
the STM literature concerning the distinctive role of the
phonological loop component in the Baddeley and Hitch
(1974) model. Because our task did not target articulatory
suppression, any effects due to verbal strategies would fall
outside our predictions. Our participants were therefore
liable to confuse increments, starting points and the
lengths of the newly formed chunks. It is also possible that
our subjects needed to vocalize the numbers while
unpacking them from the chunks, hence producing an
additional subvocal output effect that depended on the
length of the original sequence. Overall, this phenomenon
might unfortunately result in a lower estimate of the
chunking abilities based on algorithmic compression.

Because it is difficult to disentangle algorithmic com-
plexity (information stored in conceptual form appropriate
for underlying chunk formation) and verbal complexity
(information stored in phonological form) in our tasks,
such confounding seems an inevitable problem, although
our results still suggest the overall presence of a compres-
sion factor. In conclusion, we agree that the limits in the
subjects’ ability to recall our chunkable material is proba-
bly modulated by a linguistic factor, although we believe
that this factor mainly operates by degrading the available
regularity (given that natural language cannot have a more
powerful expressiveness than algorithmic complexity).

We are considering future experimentation that could
potentially test the contribution of verbal memory in our
chunking span tasks. For instance, the testing of localist
and globalist assumptions (Cowan, Baddeley, Elliott, &
Norris, 2003) could take profit of the analogy between
the short words vs long words factor used in previous stud-
ies and the small chunks vs. large chunks opposition that
calls into play in our study. For instance, it seems that both
localist (Neath & Nairne, 1995) and globalist (Bryant, 1986;
Cowan et al., 1992) approaches predict that the overall
proportion correct decreases as the proportion of long
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words increase for lists of fixed length. This is not reflected
in our data, which rather suggests that algorithmic com-
plexity surpasses verbal complexity.

5.3. A comparison to the minimum description length
approach

There has been a long tradition in psycholinguistics of
using information theory to account for word recognition
and word segmentation (Altmann & Carter, 1989), two pro-
cesses that have often been studied through the learning of
redundant strings generated by artificial grammars (Miller,
1958; Perruchet & Pacteau, 1990; Pothos, 2010; Pothos &
Wolff, 2006; Robinet, Lemaire, & Gordon, 2011; Servan-
Schreiber & Anderson, 1990). The present paper strengthens
the hypothesis that recoding of information underpins
chunking, with the limits of capacity set by optimal
compression. Information directly leads to code lengths,
and the computation of code lengths (such as those
computed by Shannon-Fano, Sayeki, 1969 or Huffman
coding) is straightforward to estimate compressibility. For
instance, given a set of four objects associated to different
counts (x,x,x,x,y,y,z,w), a basic encoding of objects
(x = 00,y = 01,z = 10,w = 11) leads to a total of 16 bits after
the different objects are concatenated using their code: 00,
00, 00, 00, 01, 01, 10, 11. Using a more optimal Huffman code
such as (x = 0, y = 10, z = 110, w = 111) however allows more
compression: 0, 0, 0, 0, 10, 10, 110, 111, comprising 14 bits.
Usually, an MDL solution (Rissanen, 1978) is combined with
this Huffman method because the length of the redescrip-
tions (e.g., x = 0, y = 10, z = 110, w = 111, or x = 00, y = 01,
z = 10, w = 11) still needs to be taken into account in order
to quantify the total memory space taken by the compres-
sion process. The MDL principle states that the best explana-
tion is the one that permits the greatest compression of the
data, including the recoding process. Let’s imagine that the
following 15 character sequence 123123454512345 needs
to be compressed. The redescription a = 123 and b = 45 al-
lows optimal compression since it leads to an aabbab repre-
sentation, for a total of 13 characters when both the
recoding process and the writing of the new sequence are
combined (a + 123 + b + 45 + aabbab). However, using
a = 123, b = 45, and c = 12345, although leading to a shorter
aabbc sequence, the overall compression process is more
costly (a + 123 + b + 45 + c + 12345 + aabbc = 18 characters)
than the original sequence.

Nevertheless, this very useful MDL approach is not to-
tally advantageous when a few regular patterns show
equivalent frequencies, which is the case of the short lists
that our participants were given. Effectively, the recoding
of 12349876 in a = 1234 and b = 9876 in order to retain
ab does not lead to any sort of compression. This does
not mean however that some other kind of recoding
process cannot operate. For instance, the remembering
of 123456789 per se seems very lengthy in comparison
with a more structured algorithmic representation such
as ‘‘1–9’’. The same remark applies to the
0112358132134. . . sequence (the Fibonacci number) that
can be unpacked from the brief in = in�1 + in�2 formula, as
long as one figures it out. Algorithmic compression can
underlie many coding schemes, and in that respect,

Kolmogorov complexity is generic enough to express how
optimal compression can be achieved when allowing every
possible way for subjects to simplify a sequence. For in-
stance, the sequence 011235813213443112318532110 is
very compressible because the algorithmic distance be-
tween 0112358132134 and 43112318532110 is very low
(the latter is the inverse of the former). By combining the
fibonacci formula and the inverse function, an optimal
compression is achieved using two chunks. The underlying
principle in our study is that the ability to compress the
data reflects how much the subject has learned about the
regularities in the data, and that a pretty good estimate
of regularity is the (approximate) Kolmogorov complexity.

6. Conclusion

Our results highlight the centrality of compression in
working memory, and suggest that the size of a sequence
after compression—in other words, its Kolmogorov com-
plexity—determines how much space it occupies in mem-
ory. This means that both Miller’s magic number (7 ± 2)
and Cowan’s (4 ± 1) are correct—but they refer to different
quantities. Cowan’s number refers to the number of chunks
that can be stored, which in our account is proportional to
the size of the string after compression. Miller’s number re-
fers to the number of digits in an uncompressed string of
approximately typical compressibility, which when com-
pressed reduces to about four chunks. The more meaning-
ful limit is Cowan’s, because it is the size after compression
that determines how much can really be stored.
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