
Preprint; please don’t quote

A rule-based presentation order facilitates category learning
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We investigated the mechanisms by which concepts are learned from examples by manipulating
the presentation order in which the examples are presented to subjects. We introduce the idea
of a rule-based presentation order, which is a sequence that respects the internal organization
of the examples within a category. We find that such an order substantially facilitates learning
as compared with previously known beneficial orders such as a similarity-based order. We
discuss this result in light of the central distinction between rule-based and similarity-based
learning models.

A number of studies have investigated whether category
learning is influenced by the order in which examples are
presented. Elio and Anderson (1981) found that categories
are learned faster when training is blocked into groups of
mutually similar examples (see also Elio & Anderson, 1984).
More recently, Medin and Bettger (1994) demonstrated a
strong learning advantage when training objects are pre-
sented in an order that tends to maximize similarity between
successive examples. Other studies, such as the those of
Clapper and Bower (1994) and Goldstone (1996), have fo-
cused on the effect of alternation of contrasting categories.
Presentation order effects are especially interesting in light of
categorization models that emphasize incremental learning
from trial to trial. For example, Sakamoto, Jones, and Love
(2008) showed that order can affect the incremental update of
both category means and variances (see also Love, Medin, &
Gureckis, 2004). Incremental learning models are naturally
susceptible to order effects, while other models may be less
so, so the manipulation of presentation order is a potentially
useful tool for studying the mechanisms of learning.

However, previous studies of presentation order were lim-
ited in that they used orders based on simple similarity, for
example maximizing or minimizing the similarity between
adjacent training examples. Here we explore a type of pre-
sentation order that depends in a more “structured” way on
the nature of the category to be learned. We introduce the no-
tion of a rule-based presentation order, which is one that de-
rives from the internal structure of the training examples. In
our rule-based order, objects that are “within a rule”—that is,
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that obey the same structured subclass within the category—
are presented adjacently in the presentation sequence. Train-
ing then moves on to another subclass, and so forth until all
objects have been presented. (Negative instances are ran-
domly interspersed among the positives; only the order of
the positives is manipulated.) Below, we compare subjects’
performance with such an order to the similarity-based order
found to be advantageous in earlier studies. For compari-
son we also include a dissimilarity-based order, previously
found to be disadvantageous. We hypothesize that the rule-
based order would facilitate learning, particularly in highly
structured concepts (i.e. those containing more clusters), by
aiding the subject in mentally organizing what would other-
wise appear heterogeneous or chaotic.

Method

Participants

The subjects were 96 Rutgers University students who re-
ceived course credit in exchange for their participation.

Procedure

Tasks were computer-driven. Participants learned to sort
stimulus objects using two keys, with successful learning en-
couraged by means of a progress bar. Stimulus objects were
presented one at a time in the upper part of the computer
screen. After each response, feedback indicating a correct
or incorrect classification was provided at the bottom of the
screen for two seconds. Subjects learned a simple concept
in two dimensions as a short warm-up session. Then each
subject was asked to learn the two chosen concepts (details
below). The order of the two concepts was counterbalanced
between subjects. For each subject, a single presentation or-
der was randomly chosen and applied to the two concepts.
The three different presentation orders are described in more
detail below.

Each correct response scored them one point in a progress
bar. The point was represented by an empty box that was
filled in when subjects gave a correct response. To regu-
late the learning process, each response had to be given in
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less than 8 seconds (making a maximum of 10 seconds be-
tween two stimuli when the subjects got a “Too late” mes-
sage feedback lasting itself two seconds). If the response
was given too late, participants would lose 3 points on the
progress bar. The number of points in the progress bar ded-
icated to learning was 4 × 2D (D = number of dimensions,
4 in our study). This criterion was identical to the one used
by Shepard, Hovland, and Jenkins (1961) in their first ex-
periment. Consequently, subjects had to correctly classify
stimuli on four consecutive blocks of 2D stimuli.1

Choice of concepts studied
Participants were each given two concepts to learn,

each defined over four dimensions (shown schematically in
Fig. 1). We used four-dimensional concepts so that the num-
ber of objects to be classified (24 = 16) would be large
enough to bring out any effects of our manipulations of pre-
sentation order, but small enough to be manageable in a sin-
gle experimental session. We chose to focus on types 14[8]
and 124[8] (Fig. 1) of the typology of Feldman (2003) (an ex-
tension of those in Shepard et al., 1961 and Feldman, 2000).
In this notation, the [8] extension means that there are 8 pos-
itive examples in the concept, 4 means that the concept is
based on four dimensions, and the 1 and 12 are arbitrary la-
bels which identify these concepts from among the 72 other
concepts available.2

The two concepts are defined up to isomorphism respec-
tively by the formulae

14[8] � d′,

124[8] � a′(bc)′ + ad′(bc′ + b′c).

Here we use a standard notation in which a′ refers to negation
of feature or clause a, ab refers to the conjunction of a and b,
and a+ b to their disjunction (equivalent to but more concise
and readable than the ∧,∨,¬ notation often used). In Fig. 1
the concepts are shown in an arbitrary rotation and permu-
tation of features; as explained below this mapping was ran-
domized in the experiment. The concepts are also encoded
and represented linearly in Table 1.

The symbol � in the equations above indicates congru-
ence or structural isomorphism up to this arbitrary mapping.
For example the concepts a, a′, b, ..., or d′ are all congruent
because they are equivalent after relabeling of the features;
in each case exactly one value of one feature defines the con-
cept. Concept 14[8], because it can be expressed by a single
literal, has complexity 1 and is thus the simplest concept in
the 4[8] family, equivalent to “affirmation” (assertion of the
presence of a single feature) in the classical literature (the
four-dimensional analog of Type I from Shepard et al., 1961).

The second concept, 124[8], has complexity 9 literals and
is thus of moderate complexity relative to others in the 4[8]

family. (Complexity of concepts in this family ranges from
1 to 22 literals.) We chose this concept for several reasons.
First, we wanted a moderately complex concept so that the
entire learning procedure could be completed by most sub-
jects in about an hour. Among concepts of moderate com-
plexity, we chose 124[8] because its positive examples can
be grouped fairly naturally into subcategories or clusters (la-
beled Clusters 1, 2 and 3 in Fig. 1), allowing us to investigate
the interaction between presentation order and such internal
substructure. As can be seen in the figure, Cluster 1 com-
prises six of the concept’s eight members, corresponding to
the first disjunctive clause (a′(bc)′) in the concepts’s com-
pressed formula. Thus these six objects collectively receive
an extremely compact expression—a clause of only three lit-
erals (which can be translated into a verbal expression such
as “all a′ except bc”). By contrast, Clusters 2 and 3 con-
sist of only one object each, each requiring four literals to
specify just by themselves (respectively abc′d′ and ab′cd′,
corresponding to the expansion of the second clause in the
formula). Thus Cluster 1 plays the role of a salient “rule”,
while Clusters 2 and 3 play the role of “exceptions”.

Our presentation order is based on the presupposition that
subjects will cluster the members of concept 124[8] in the
manner given above. This a reasonable assumption, in part
because this clustering corresponds to a highly compressed
Boolean form, consistent with the minimization of Boolean
complexity (Feldman, 2000). Naturally, though, this con-
cept (like any other) admits other interpretations or subclus-
terings, and we have no way of confirming that our subjects
mentally organized it in the way we expected (other than the
fact that the presentation order based on this decomposition
did in fact benefit learning, as will be seen below). However,
any alternative subclustering that subjects might have drawn
would simply add noise to our analysis, working against our
hypothesis, so our assumption is conservative.

Stimuli
Stimulus objects varied along four binary, separable di-

mensions (shape, color, size, and filling texture). For each
concept (designation of 8 positive and 8 negative objects),
assignment of abstract conceptual structures to physical fea-
tures was randomized, i.e. the abstract features a, b, c, d were
randomly permuted before being realized as physical fea-
tures. Also for each concept, the choice of two values for
each feature was chosen randomly from a sometimes longer

1 Many studies require only 75% or 80%, but such a low criterion
would defeat the goals of our study, because it would make it possi-
ble to learn only the “rule-like” examples and completely avoid the
“exceptions.”

2 In four Boolean dimensions, there are 74 qualitatively differ-
ent types of concepts with 8 positive examples, giving a classifica-
tion analogous to (though more complex than) that of Shepard et al.
(1961).
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list (shape = triangle, square, or circle; color = blue, pink,
red, or green; filling = hatched or grilled; size = small or
big). Each of the 16 combinations of values formed a sin-
gle unified object (e.g., a small hatched red square, or a big
grilled blue circle) to avoid numerical or spatial biases when
displaying stimuli.

Ordering of stimuli

The main manipulation in the experiment was the choice
of presentation order of objects within each concept. Presen-
tation order was a between-subject manipulation. Again, one
presentation order was randomly chosen for a given subject
and then applied to the two concepts. We used three orders:
a rule-based order, a similarity order, and a dissimilarity or-
der. As discussed above, concept 124[8] consists of a single
relatively coherent cluster of six objects and two “clusters”
of one object each. By contrast, concept 14[8] consists of a
single homogeneous cluster.

In each of the three order types, objects were drawn with-
out replacement in each block of 16; that is, each block of
16 consisted of a complete permutation of all objects. The
negative examples were randomly interspersed among the
positives (in random order) in order to avoid long uninter-
rupted sequences of positives or negatives, even though this
presumably made it more difficult for the subjects to benefit
from the presentation orders. Again, only the order of the
positive examples was manipulated, taking one of the orders
detailed below, while the order of the negatives was always
random (and thus different from block to block and subject
to subject).

In the rule-based order, objects were drawn randomly
from within the largest cluster (in 14[8], the entire concept;
in 124[8], Cluster 1) until all 8 (14[8]) or 6 (124[8]) had been
presented. In concept 14[8] this would exhaust the entire con-
cept, while in concept 124[8], this would be followed by the
objects in Cluster 2 and Cluster 3 (in random order). Thus
in the rule-based order all members obeying a common rule
were presented together, in random order but separated from
exceptional members.3

In the similarity order, the first object was chosen at ran-
dom, and subsequent objects were chosen randomly from
those maximally similar to the previous object, and so forth
until the concept was exhausted.4 Ties were resolved ran-
domly. Dissimilarity between two stimuli i and j is given by
the Minkowski metric

di j = [
n∑

a=1

|xia − x ja|
r]1/r (1)

where xia is the value of stimulus i along dimension a. We
used a city-block metric appropriate for separable dimen-
sions used in this study (r = 1). In general, this similarity
ordering does not respect the cluster boundaries in force in

the rule-based order, as similarity steps routinely cross in and
out of clusters in 124[8]. The similarity order also differs from
the rule-based order in that (aside from ties) the steps are not
random.

In the dissimilarity order, objects were drawn exactly as
in the similarity order except with similarities minimized in-
stead of maximized. That is, each object would be followed
by another object as distant as possible from it in the space.

In all three orders, each new block of 16 was newly ran-
domized (the positive instances were randomly drawn but
constrained to obey the desired order, and the negative in-
stances were randomly interspersed) so subjects rarely saw
consistent specific sequences of objects between blocks.

Comparison to procedures used in other studies

In Elio and Anderson’s (1981) similarity-based order, the
presentation order increased inter-item similarity relative to
a random sequence, but did not maximize it. Our similarity-
based order is based on the Minkowsky metric, with no dis-
tinction of any sort between examples except their similar-
ity. Items are simply chosen so that they maximize (or in
the dissimilarity order, minimize) the similarity to the pre-
vious item. In this sense our similarity-based order is more
extreme than Elio and Anderson’s, but also more varied than
the one used by Medin and Bettger (1994), who used a single
fixed similarity-based order and dissimilarity-based order in
each of their experiments. Our procedure produces a locally
maximal inter-item similarity in the similarity-based order,
and a minimal inter-item similarity in the dissimilarity-based
order. (Numbers are given in the results section.) In com-
parison, the inter-item similarity in the rule-based order is
moderate. Some presentation order samples are given in Ta-
ble 1. Finally, note also that because subjects are not aware of
where the blocks begin, subjects might be more sensitive to
the isolation of the stimuli belonging to different clusters in
the rule-based ordering than to the strict position of the clus-
ters in the blocks (related to the von Restorff isolation effect,
transposed to categorization in Sakamoto & Love, 2004).

3 The term “rule-based” refers to the fact that this order respects
a “rule plus exception” organization (Nosofsky, Palmeri, & McKin-
ley, 1994). The organization more generally relates to disjunctive
normal form (DNF), in which each term indicates a conjunction of
features. Some disjunctive terms cover many cases (major rules);
others cover fewer (minor rules, or major classes of exceptions);
and still others cover only case one each (exceptions). An example
is a rule like “birds = (animals that fly) or (ostrich-like animals—
which posses feathers but do not fly) or (kiwi—also a flightless bird
but not like an ostrich)”.

4 Note that similarity is computed on a trial-by-trial basis, so
while inter-item similarity is always maximal between successive
examples, it is not necessarily maximized over an entire block (i.e.
similarity is maximized locally but not globally).
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Figure 1. Concepts 14[8] and 124[8] of the 4[8] family. (See Feldman, 2000, for further explanation of the concept family taxonomy.)
Positive examples are indicated by black circles; negative examples are represented by empty vertices. There is one cluster in concept 14[8]
and three clusters in concept 124[8]. The stimulus coding order is abcd. The code 0000 stands for a′b′c′d′, 1111 stands for abcd. The number
preceding the code is a simpler identification number.

Results
The average inter-item similarity within the similarity-

based order, the dissimilarity-based order and the rule-based
order was respectively 2.9, 1.5, and 2.3 for concept 14[8] and
2.7, 1.3, and 2.1 for concept 124[8]

5. These empirical mea-
sures correspond to what would be expected in principle. For
example, in concept 14[8], the similarity between two positive
stimuli is most of the time equal to 3 in the similarity-based
order (once in a while, it can be equal to 2 or 1 at the end
of certain blocks, when the path does not allow any other
choice), except between the last stimulus of a given block
and the first stimulus of the next block (the first stimulus of

a block being drawn randomly). The average inter-item sim-
ilarity between the last stimulus of the nth block and the first
of the (n + 1)th block is 2.5 (i.e., the average of 4, 3, 3, 3,
2, 2, 2, 1). Therefore the theoretical average inter-item sim-
ilarity in concept 14[8] is (7 × 3 + 1 × 2.5)/8 ≈ 2.9, agreeing
with the empirical measure. These measures will be used for
comparison purposes in the following analysis.

We first consider the influence of presentation order on
learning, and then provide more detailed analyses of the pro-

5 The average inter-item similarity was computed for positive ex-
amples only because negative examples were presented in random
order in all presentation orders.
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Table 1
Encoded study items presented in Fig. 1, and presentation order samples in concept 14[8]

14[8] 124[8] Presentation order samples in 14[8]
# Cat 1 # Cat 1 SBO DBO RBO
1 0000 1 0000 1 0000 - Cat 0 3 0100
2 1000 3 0100 2 1000 8 1110 5 0010
3 0100 4 1100 - Cat 0 - Cat 0 7 0110
4 1100 5 0010 4 1100 1 0000 - Cat 0
5 0010 6 1010 - Cat 0 - Cat 0 - Cat 0
6 1010 9 0001 3 0100 4 1100 8 1110
7 0110 11 0101 7 0110 5 0010 4 1100
8 1110 13 0011 8 1110 - Cat 0 - Cat 0

- Cat 0 3 0100 1 0000
# Cat 0 # Cat 0 - Cat 0 6 1010 - Cat 0
9 0001 2 1000 6 1010 - Cat 0 - Cat 0

10 1001 7 0110 5 0010 - Cat 0 2 1000
11 0101 8 1110 - Cat 0 7 0110 6 1010
12 1101 10 1001 - Cat 0 - Cat 0 - Cat 0
13 0011 12 1101 - Cat 0 2 1000 - Cat 0
14 1011 14 1011 - Cat 0 - Cat 0 - Cat 0
15 0111 15 0111
16 1111 16 1111

Note. In the “Presentation order samples in 14[8]” column, Cat 0 cells can be replaced by any negative examples of the Cat 0 category,
because negative examples were drawn in random order; SBO, Similarity-based order; DBO, Dissimilarity-based order; RBO, Rule-based
order; Stimulus # is also indicated in Fig. 1

gression of learning over time, and finally of classification
response times.

Influence of presentation order on learning

Among the 96 subjects (32 by presentation order), only 69
subjects could finish the experiment within the time slot al-
located to the experiment. The analysis of results only takes
into account these 69 subjects (25 for the rule-based proce-
dure, 21 for the dissimilarity order, and 23 for the similarity
order). The loss of subjects apparently tracked the difficul-
ties associated with the presentation orders presented below,
although the chi-square test of independence between pre-
sentation order and loss was not significant, χ2(2) = 1.2, ns.6

Figure 2 shows the number of blocks which were required
for subjects to reach the learning criterion in the three condi-
tions (rule-based, similarity-based, and dissimilarity-based)
for both concepts (14[8] and 124[8]); respectively 5.2, 6.1,
and 6.9 blocks for concept 14[8] and 22.1, 28.1, and 42.6
blocks for concept 124[8]. The results indicate that there was
an effect of the presentation order on learning: the number
of blocks required to reach the learning criterion depended
on the presentation order that was chosen (F(2, 66) = 15.3,
p < .001, η2

p = .32). Learning was fastest in the rule-based
order (mean = 13.7 blocks until criterion, s.d. = 10.4), second

fastest in the similarity-based condition (mean = 17.1 blocks,
s.d. = 12.6), and slowest in the dissimilarity-based condition
(mean = 24.7 blocks, s.d. = 22.5). The superiority of the
similarity over dissimilarity order replicates earlier findings.
But the main result, that the rule-based ordering is superior
to either, is novel.

As can be seen in the Fig. 2 , concept 124[8] was learned
much more slowly overall (F(1, 66) = 320, p < .001,
η2

p = .83). The effect of presentation order was far larger
in magnitude in this complex concept, which is reflected
in the interaction between concepts and presentation orders
(F(2, 66) = 15.8, p < .001, η2

p = .32). When analyz-
ing simple effects of presentation orders for each concept,
the effect of presentation order was only significant in con-
cept 124[8] (F(2, 66) = 16.34, p < .001, η2

p = .33). The
between-subjects t tests indicated that only the three paired
comparisons between presentation orders for concept 124[8]
were significant. However, a subsequent analysis of learn-
ing curves will reveal that presentation order also influences

6 The loss of subjects probably stems from our subject schedul-
ing system, which unfortunately did not leave many subjects suf-
ficient time to complete the experiment given the strict 100% cri-
terion. Elio and Anderson in their second study also excluded 14
cases among eighty subjects with a 85% correct criterion.
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Figure 2. Number of blocks taken to reach the learning criterion of
100% correct classification for two consecutive blocks. Error bars
show +/- one s.e.

learning of concept 14[8].

Detailed analysis of the progression of learning

We next turn to the question of how learning progresses
over time in the three presentation orders. Fig. 3 (concept
14[8]) and Fig. 4 (concept 124[8]) show both the percentage
and the number of correct responses for each block as a func-
tion of block number over the course of the experiment. Note
that the absolute number is sometimes more revealing than
the percentage; for example 14 correct responses (87.5%)
can be immediately understood to mean “all but two in the
concept.”

Concept 14[8]. As can be seen in Fig. 3, learning of
the simpler concept 14[8] was slightly more efficient in the
rule-based than in the similarity order. The fit comparison
procedure described in the notes of Fig. 3 indicated that the
two curves differ significantly in fitted form (FRS (42, 44) =
13.17, p < .001) . Thus even in concept 14[8], though the
difference is relatively subtle, the rule-based order produces
significantly more rapid learning than the similarity order.
In contrast, the dissimilarity order seems to have induced
ineffective learning compared to the similarity-based order
(FDS (42, 44) = 19.25, p < .001) and the rule-based order
(FDR(42, 44) = 18.46, p < .01).

Concept 124[8]. Using a similar fit comparison proce-
dure, the same ranking of effectiveness of the three presen-
tation orders (rule-based > similarity > dissimilarity) was
visible in the learning curves in concept 124[8] (again much
larger in magnitude than in the simpler concept; we obtained
F(144, 147) > 40, p < .001 for the three paired comparisons
of the learning curves).

Figure 3. Performance as a function of block number for the three
presentation orders, concept 14[8]. To compare any pair of learn-
ing curves, we fitted the data sets to a common nonlinear model
y = b0+b1/x which fit all three datasets well (R2 > .89 in all cases).
We tested the null hypothesis of equal slopes between pairs of re-
gression curves by comparing the mean squared error when the two
datasets were pooled compared to when they were fit separately.
(the technique is similar to verifying that there is no interaction be-
tween the covariate and treatments before running an ANCOVA).
The results showed that the three learning curves are statistically
distinct.

Figure 4. Performance over time (blocks) for the three presen-
tation orders, concept 124[8]. The three learning curves are statis-
tically distinct. The fit comparison procedure is described in the
notes of Fig 3. This time we fitted the data sets to a quadratic model
y = b0 + b1 x + b2 x2 which fit all three datasets well (R2 > .92 in all
cases).
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Discussion
Like several previous studies, this study demonstrates that

the sequence in which examples are encountered can pro-
foundly influence the success of learning. Our results show
that a rule-based order yields learning superior to the simi-
larity order previously found most advantageous (Medin &
Bettger, 1994). Though our interest is primarily theoretical,
this result has obvious implications for the presentation of
material in educational settings (Avrahami, 1987).

Our results demonstrate that the benefit of the rule-based
order does not derive entirely from the inter-item similarity it
entails. Inter-item similarity was maximal in the similarity-
based order, and only intermediate in the rule-based order,
but the rule-based order elicited the best performance. We
conclude that the nature of the rule-based order (i.e., ran-
domness and clustering) provides an independent learning
benefit above and beyond that provided by inter-item sim-
ilarity. Nevertheless, in order to affirm that the nature of
rule-based orders is critical in the performance we observed,
subsequent experiments are needed to show more precisely
that with an equivalent inter-item similarity, subjects would
perform worse in a non rule-based order than in a rule-based
order. Note that a reduction in between-block order variabil-
ity (as a consequence of presenting the six positive items of
the largest cluster before the two remaining exceptions on
every block) in concept 124[8] for the rule-based order is very
unlikely a source of facilitation for subjects. There are 6! =
720 possible orders for the six examples of the largest clus-
ter. Subjects could not rely on a reduced number of possible
orders to come up with a strategy.

This superiority of the rule-based order over the similar-
ity order might be attributed to the illusory structure that the
similarity order might tend to induce in the minds of learners.
The similarity condition entails a relatively orderly trajectory
through the space that is, in fact, not genuinely informative
about the category, and thus might temporarily mislead the
learner about the structure to be learned. By contrast the rule-
based order, by definition, randomizes that which is not infor-
mative (steps within a cluster) while segregating the clusters,
yielding superior learning.

These results suggest that human learning does involve
a process of rule-based abstraction, consistent with many re-
cent hybrid models (Anderson & Betz, 2001; Erickson & Kr-
uschke, 1998; Goodman, Tenenbaum, Feldman, & Griffiths,
2008; Nosofsky, Palmeri, & McKinley, 1994; Rosseel, 2002;
Smith & Sloman, 1994) or clustering models such as SUS-
TAIN (Love et al., 2004), which overtly involve a rule-like
component. (SUSTAIN also involves an incremental func-
tioning which can be responsible for over specific solutions
when the items are presented in an unfavorable order.) It also
might be consistent with a pure exemplar-storage schemes
(Estes, 1994; Kruschke, 1992; Medin & Schaffer, 1978;
Nosofsky, Gluck, Palmeri, McKinley, & Gauthier, 1994),

as these are also sensitive to the homogeneity of categories
(Hintzman, 1986), though the connection would be less di-
rect. In any case, exemplar models are generally “batch”
models (i.e., in batch algorithms, categorization probabili-
ties are not computed trial-by-trial, but for the whole set of
examples block after block), meaning that they consider the
set of examples as an unordered group, and hence could not
model our results without some sort of extension. One excep-
tion is ALCOVE (Kruschke, 1992), because it includes trial-
by-trial updating. AMBRY (Kruschke, 1996), derived from
ALCOVE, might also be adequate for fitting our results, be-
cause it allows changes of category-to-response association
weights and exemplar-to-category association weights after
every trial in order to model rapid shifting in categorization.
We feel that the superiority of rule-based presentation or-
ders is a key test for models of categorization learning: a
finding that any competitive model needs to be able to ac-
count for in principle. The comparative benefits of differ-
ent order may be helpful in deciding among competing rule-
based models, which differ in nature of the rules extracted
(Bradmetz & Mathy, 2008; Feldman, 2000; Lafond, Lacou-
ture, & Mineau, 2007; Vigo, 2006 and also Love et al., 2004;
Nosofsky, Palmeri, & McKinley, 1994). That is, alternative
rule-based orders could be devised to match the abstraction
or compression techniques entailed by the various theories.
Following our argument, the most effective presentation or-
ders for subjects would be that which accords with the sub-
ject’s own internal hypotheses or representations.

Of course, there is no guarantee that any given presenta-
tion order induces in subjects anything like the mechanisms
involved in its construction. A rule-based order does not nec-
essarily induce the formation of rules, nor does a similarity-
based order necessarily induce the computation of similarity;
nor for that matter does a random presentation necessarily
induce anything like random guessing or rote memorization.
The learning mechanisms hypothesized in rule-based models
and those hypothesized in exemplar models both capitalize
on the structure present in the observations, though in differ-
ent ways.

The differences among presentation orders depend in an
interesting way on the nature of the concepts learned. Most
obviously, the rule-based presentation order only provides
a substantial benefit if the category is highly structured—
that is, when it contains salient subcategories around which
the presentation order can be organized. For concepts like
14[8] that lack internal subdivisions, a rule-based presenta-
tion is in effect a random presentation. But a similarity order
might induce a sequence of temporary over-specific hypothe-
ses (blind alleys) based on accidentally contiguous examples,
which would impede learning.

We noted a particular negative effect of the dissimilarity-
based order, in which subsequent positive examples were
chosen as distant as possible from each other. Research on
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the effect of the relative magnitude information may account
for this result (Stewart, Brown, & Chater, 2002). Stewart
et al. showed that categorization of a stimulus on trial n
is influenced by the stimulus and response on trial n − 1,
when information about presentation orders is not discarded.
Their Memory and Contrast (MAC) model predicts that par-
ticipants tend to respond with a different category when the
difference between two consecutive examples is large.

Conclusion
We believe that the current investigation is an important

step in understanding the effect of presentation order, but
several new conditions need to be explored to gain additional
insight. A first extension would be to separate the training
phase (in which the presentation order is manipulated) from
the categorization phase. This would allow the positive ex-
amples to be presented alone, rather than being interspersed
with negative examples, which muddies the desired order.

We also plan to model our results, both by existing in-
cremental models, as well as by extensions of existing mod-
els. Exemplar models might be extended to take the tem-
poral dimension into account by including sequential order
as a feature in similarity comparisons. The similarity be-
tween two stimuli would the be influenced by their relative
serial position, inducing a neighborhood structure in terms
of both features and time. The model could then capitalize
on the temporal dimension to assess local distinctiveness, in
the same way serial position effects are modeled as discrim-
ination problems in serial or free recall (Brown, Neath, &
Chater, 2007). Another solution proposed by Stewart et al.
(2002) is to adapt an exemplar model to predict sequence
effects by weighting the stimulus on the previous trial more
heavily than others in the summed similarity calculations, on
the grounds that recent stimuli are more available in mem-
ory, or simply that they ought to be weighed more heavily in
decisions.
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