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Determining the causes of working memory maturation is a global issue in developmental
cognitive psychology. The question has most often been addressed by manipulating stimu-
lus types within participants. In the present experiment, we instead addressed this question
by examining development in children’s working memory using a single stimulus type. Pri-
mary school children aged 6 to 10 years (total N = 256) participated in a task inspired by the
game SIMONr. Children saw sequences of colored squares presented one-at-a-time, and then
attempted to reproduce the sequences in the correct order. Some sequences were simple and
contained regularities that made them compressible, while other sequences were more complex
and less compressible. We found that children’s memory for both kinds of sequences improved
with age. However the ratio between children’s memory for simple and complex sequences
did not substantially change with age. These findings suggest that storage capacity of work-
ing memory increases in middle childhood, but that children’s ability to optimize storage by
compressing sequences remains stable across this age range.

Determining the causes of working memory maturation
is a major issue in developmental psychology. How do im-
provements in working memory come about ? One expla-
nation is that these improvements result because with age,
stimuli take up less space in memory and are stored more
compactly. Another explanation is that improvements result
from developmental increases in the space available to store
information. In the present study, we test these account using
a task inspired by the game Simon Nr.
Memory Optimization Ignored in Developmental Studies

Today, young children at all primary schools partake in
math classes where they are taught how to divide numbers.
Long ago, however, the algorithms for division were only
taught in a much less accessible fashion in the best and first
European universities of the 16th century, as these algorithms
were perceived as extraordinary difficult (Swetz, 1987). This
example illustrates that although new ideas and concepts are
continuously being discovered, these same concepts can be
modified and simplified so that they can be more readily con-
veyed to others. The rise of conceptual complexity with his-
tory is counterbalanced by simplifications (Berthoz, 2012).
This ‘simplexity’ process is important because our ability
to process and think about information is constrained by the
limits on our ability to hold information in working memory
(WM). As such, the ability to compress and simplify infor-
mation for more efficient storage in WM may have been cru-

cial for historical advances in human intellectual progress, in
particular because simpler concepts can leave room for more
complex reasoning1.

This ability to compress and store information in WM may
also be crucial for intellectual progress over the course of
ontogeny. The expansion of working memory with age has
been suspected to be a primary factor responsible for cogni-
tive development for nearly half a century (Pascual-Leone,
1970). One reason is that task demands in any domain are
determined by the extent to which the task requires main-
tenance of information (Conway, Cowan, Bunting, Therri-
ault, & Minkoff, 2002). For example, infants’ difficulty with
object permanence and the A-not-B task appears to depend
on the challenge of maintaining in mind the current location
of an object. This idea that working memory and reasoning
share related limits concurs with the observation that WM ca-
pacity is strongly correlated with cognitive aptitude in adults
(Colom, Flores-Mendoza, & Rebollo, 2003; Conway, Kane,
& Engle, 2003; Halford, Cowan, & Andrews, 2007).

However, the importance of WM for children’s cogni-
tive development does not, in itself, imply that WM de-
velops across much of childhood. Just as human intellec-
tual progress over the last hundred years has not necessarily

1There are also conceptions in artificial intelligence which favor
a similar general approach (Baum, 2004; Hutter, 2005).
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corresponded with improvements in WM (e.g., see Gignac,
2015), it is likewise possible that children could also make
progress with constant WM capacity. One motto could be
that constant capacity is not incompatible with progress as
long as information can be compressed. This observation
highlights the importance of better determining the contribu-
tions of storage and compression processes to WM capacity
development.

In the present paper, we therefore attempt to separate the
ability to store and manipulate information from the abil-
ity to process information and to compress it. A better un-
derstanding of how storage capacity and compression abil-
ity contribute to the growth of WM should help shed light
on their relation with the development of intelligence and
knowledge in the future. We next review how the develop-
ment of both factors (storage capacity, compression ability)
might each lead to gains in WM performance, and then dis-
cuss one reason it is difficult to assess whether these factors
are linked with increases in WM performance.
Storage Capacity and Compression Ability in Working
Memory

According to one popular view of WM (Luck & Vogel,
1997; Miller, 1956; Rouder et al., 2008), storing information
in separate slots in WM is much like packing possessions
into boxes. Just as your ability to store possessions is limited
by the number of boxes that you have available, people may
be limited in the number of chunks of information they can
store. The average WM span in adults is 4 ± 1 chunks of
information (Cowan, 2001), and this limit applies across di-
verse kinds of information to be remembered. For example,
depending on the task, this limit can apply to digits (running
span task), letters (complex span task), multi-feature visual
objects (change-detection paradigm), hence, the use of the
term chunk to represent the variable content of a slot (for a re-
view of these different tasks, see Brady, Konkle, & Alvarez,
2011; Conway et al., 2005). Developmental improvements
in WM performance, then, could stem from changes in the
number of chunks available to store information.

The number of chunks available may not be the only factor
that affects WM performance. In packing boxes, the number
of possessions that you pack depends not only on the num-
ber of boxes available, but also on your ability to arrange
the possessions in the boxes. If you are efficient at packing,
you may be able to optimize the available space and fit many
possessions into just a few boxes2.

A similar process has been shown to allow adults to com-
press information in WM (see Brady, Konkle, & Alvarez,
2009; Thalmann, Souza, & Oberauer, 2019; but ?, ?, for a
rebuttal). This process could develop with age, and so devel-
opmental increases in WM performance could result (at least
in part) from improvements in children’s ability to compress
information. In comparison with adults and older children,
younger children might be inefficient in combining items to

be remembered so that the items can be stored with fewer
chunks (much as we might expect younger children to be
inefficient in arranging possessions in boxes).

Importantly, developmental differences in the ability to
compress should matter more for some types of items (or sets
of items) than others. One reason is simply that information
varies in its complexity and in the extent to which it can be
compressed, and some very complex information might be
entirely non-compressible. If the ability to compress infor-
mation improves with age, this could lead to age-related im-
provements in WM for stimuli that can be easily compressed
(e.g., 1 − 9 − 8 − 4 ↪→ 1984). However, development of this
ability would not benefit memory for very complex stimuli
(i.e., if stimuli such as 2cannot be easily compressed,
then improvements in compressing ability will be irrelevant).
A Challenge in Understanding Developmental Improve-
ments in Working Memory

People’s ability to compress information often depends
on the extent to which they are familiar with the stimuli
(or types of stimuli). For example, it will be easier to re-
member the letters J-S-Y-K using a single chunk (rather than
four separate items) if you are familiar with the retail store
JYSKr, or have used those letters as an acronym for "just so
you know". Either way, numerous studies have shown evi-
dence that information from long-term-memory contributes
to adults’ WM spans (Crannell & Parrish, 1957; Hulme,
Maughan, & Brown, 1991; Roodenrys, Hulme, Alban, Ellis,
& Brown, 1994; Walker & Hulme, 1999).

This raises the possibility that developmental improve-
ments in WM could primarily result from the accumulation
of knowledge across childhood (Chi, 1978; Halford et al.,
2007; Jones, Gobet, & Pine, 2008). Increases in knowledge
stored in long-term memory with age might allow children to
optimize storage in WM because the familiar objects could
be more rapidly encoded and manipulated (see Barrouillet,
Gavens, Vergauwe, Gaillard, & Camos, 2009; Case, 1995;
Jones & Macken, 2015, 2018; Reder, Liu, Keinath, & Popov,
2016, and Cowan, 2016 for a general presentation of this is-

2Inasmuch as analogies are often deceptive in science, like the
analogy from water circuits to electric circuits, it is important to
acknowledge that the boxes analogy is inexact. For instance, com-
pressing information in WM might involve a redescription of the
data, whereas the content of boxes is not usually transformed –
unless using vacuum space saver bags beforehand to squish your
possessions to save more space into the boxes)–. Also, our refer-
ence to chunks associated to slots is optional as WM capacity could
instead depend on a shared continuous resource (Bays, Catalao, &
Husain, 2009). One could assume a continuous buffer for holding
information in WM, which would not necessarily break informa-
tion up into discrete chunks. On that single buffer account (a single
storage space to continue our analogy), we could still see the size of
the buffer grow, and we could still see improvements in efficiency
in storing information in the buffer. We only chose the chunking
option because of its prevalence in current thinking about WM.
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sue). A very nice study by Simmering, Miller, and Bohache
(2015) has for instance showed that capacity for common
colors increases faster with age than capacity for shapes, but
that this difference can be attenuated using less-familiar col-
ors.

Some other studies suggest that WM capacity might de-
velop independently of the accumulation of long-term mem-
ory (Burtis, 1982; Cowan, Ricker, Clark, Hinrichs, & Glass,
2015; Gilchrist, Cowan, & Naveh-Benjamin, 2009). For in-
stance, data from Gathercole, Ambridge, Wearing, and Pick-
ering (2004) re-analyzed by Cowan (2016) suggest a rate of
development of memory capacity in childhood that is quite
independent of the properties of different types of stimuli
(e.g., words, non-words, and digits).

Regardless, the main point here is that the accumulation
of knowledge in long-term memory can make it difficult to
distinguish the extent to which growth of storage capacity
and improvements in the ability to compress materials (i.e.,
the factors we aim to investigate) contribute to developmental
increases in WM. To avoid this pitfall, our design used only
one kind of stimulus type.
The Present Approach to Understanding Working Mem-
ory Capacity Growth

In conducting our study, our chief goal was to examine
(A) whether developmental improvements in WM stem from
an increase in storage capacity, and (B) whether it stems
from improvements in compression ability. To examine these
questions, we tested 6- to 10-year-old children using a sim-
ple span task inspired by the game (SIMONr). In the task
(Gendle & Ransom, 2009; Karpicke & Pisoni, 2004; Mathy,
Fartoukh, Gauvrit, & Guida, 2016), children saw sequences
of colors (blue, green, yellow, red) which sometimes in-
cluded repetitions that produce noticeable patterns. Children
were asked to recall the sequences in their correct order, and
we measured children’s spans by determining the sequences
that they could correctly reproduce (see the Methods for spe-
cific details).

Because the sequences consisted of familiar colors, any
developmental increases in WM were unlikely to result from
the accumulation of knowledge in long-term memory across
childhood. As discussed above, increases in knowledge
might allow children to optimize storage in WM for familiar
objects. However, we assumed accumulation of knowledge
would not matter in our study, because 10-year-olds are un-
likely to have much more experience than 6-year-olds with
colors as basic as blue, green, yellow, red, considered indi-
vidually. As such, if the knowledge accumulation was the
only factor underlying age-related improvements in WM, we
would not expect WM to improve with age. Instead, any
developmental improvements would be more likely to result
from one or both of the factors we wanted to investigate (i.e.,
increases in storage capacity; improvements in compression
ability). We should acknowledge that older children might

have greater experience with basic patterns of colors, but
this would likely contribute to improvements in compression
ability

In our experiment, each child received two blocks of se-
quences (Simple vs. Complex). These blocks differed in the
algorithmic compressibility of the sequences, which is a re-
liable inverse estimation of their compressibility (detailed in
the Method section). This manipulation of complexity (or
compressibility) allowed us to test whether improvements in
WM resulted from increases in storage capacity and from
improvements in compression-ability. Following Mathy et
al. (2016), the complex sequences served as a base line for
estimating participants’ storage capacity. The main differ-
ence between this previous study and the present study is that
we increased the simplicity of the Simple condition to better
induce an optimization process, because this previous study
did not find development in compression-ability. Given that
complex sequences can scarcely be compressed or chunked,
developmental improvements in WM for these stimuli can
provides an estimate of increases in storage capacity3. In
contrast, developmental improvements in WM for simple se-
quences could result both from gains in storage capacity and
from improvements in compression-ability. Further, compar-
ing improvements in WM between the Simple and Complex
conditions provides an indication of the extent (if any at all)
to which improvements in compression-ability contributes to
increases in WM.

To understand which comparisons are most informative,
it is helpful to first consider the developmental pattern we
would expect if compression-ability does not improve with
age. If compression-ability does not improve with age, we
would expect spans for the simple and complex sequences to
increase at the same rate (for related discussion see Burtis,
1982; Case, Kurland, & Goldberg, 1982). For example, if
spans for the simple sequences doubled between younger
and older children, we would likewise expect spans for the
complex sequences to double over the same age range. To
illustrate this example, suppose that younger children have
a span of just 2 chunks, which can either be used to encode
sequences of simple sequences of 4 colors, or complex se-
quences of just 3 colors (i.e., because the simple sequences
are more compressible than the complex ones). If children
at some older age have twice as many chunks available (i.e.,
4), then they will also be able to remember sequences that are
twice as long, that is simple sequences of 8 colors or complex
ones of 6 colors. A key point to recognize, here, is that this
predicted outcome involves an interaction between sequence
complexity and age (i.e., 4−→8 involves a greater absolute
increase than 3−→6), but a very specific kind of interac-
tion. That is, in the predicted interaction, the ratio between
the spans for simple and complex sequences is constant at

3Note that this approximation method can overestimate storage
because a few regularities are still present in complex sequences.
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each age (i.e., younger children’s Simple:Complex ratio of
4:3 is identical to older children’s ratio of 8:6). This type
of progression corresponds to proportional growths as there
is a 100% increase in the span for both the simple (4−→8)
and complex (3−→6) conditions. Similarly, younger children
can remember 33% more items (3−→4) in the Simple condi-
tion than in the Complex condition, as well as older children
(6−→8 corresponding to a 33% increase).

Given this background, we can now describe the findings
that should be expected if compression-ability does improve
with age. As before, younger children would be expected
to have longer spans for simple sequences than for complex
ones. As before, this difference is expected given that sim-
ple sequences are more compressible than complex ones.
Assuming that storage capacity (e.g., number of chunks)
increases with age, we would also expect a developmen-
tal increase in children’s memory for complex sequences.
However, memory for simple sequences should increase at
a greater rate because any improvements in compression-
ability would have a greater impact on simple sequences than
complex ones. So if we again suppose that the complex se-
quences that older children remember are twice as long as
those that younger children can remember (or any other ratio
> 1), we would expect an even greater improvement with age
for simple sequences. As before, this predicted outcome in-
volves an interaction between sequence complexity and age.
But crucially, this interaction would not involve constant ra-
tios between the spans for simple and complex sequences at
each age. On the contrary, it predicts that Simple:Complex
ratios will increase with age. Said otherwise, such a pat-
tern of results would correspond to non-proportional growths
(i.e., different percentages of increases across conditions).

Method

We examined whether the rate of improvement of chil-
dren’s WM capacity for sequences of items depends on their
complexity. Children aged 6-11 completed a task inspired
by the electronic children’s toy, SIMONr, in which they
attempted to reproduce sequences of colors varying in their
complexity.

Participants. Our sample included 256 children. These
were: 47 6-year-olds (M = 78 months, SD = 3.0), 48 7-year-
olds (M = 89 months, SD = 3.1), 63 8-year-olds (M = 101
months, SD = 3.5), 50 9-year-olds (M = 113 months, SD =
3.3), and 48 10-year-olds (M = 126 months, SD = 3.4).

As local public schools were chosen randomly in the area,
the children were on average from middle-class families. We
tested the children after consent was obtained. None of the
selected participants were colorblind (i.e., we asked children
to name the four colors used in the task before the task began,
and results were discarded for children who made any error
in naming the colors). We also excluded results from eight
children (all aged 6) who had a span of zero in the subsequent

tested sequences.
In recruiting participants, we aimed to have [approxi-

mately] 50 participants per age group. The sample exceeds
this size at some ages for which we received more consents
than expected. Our sample also greatly exceeds the recom-
mended sample size of 10 participants per age group yielded
by a power analysis4 requiring a difference of at least one
item between the two conditions at a given age, a standard
deviation equal to 1, and a power of .80.

Procedure and Materials. Participants were seen indi-
vidually. They were first instructed on how to use the com-
puter and on how to best recall the sequences (e.g., in the
correct order and by paying attention to eventual repetitions
of colors). Participants were also told that the game would
become more and more difficult as they would have to pro-
gressively recall longer sequences.

In the task, participants completed a series of trials in
which they saw sequences of colored rectangles (6 cm long
× 4 cm wide) on a computer screen, and attempted to recall
each sequence in the correct order. Each sequence started
with a fixation cross centered on the screen for 1000 ms.
The colored squares then serially appeared at the centre of
a grey screen (i.e., one at-a-time) at the speed of 1000 ms
per square with a 400 ms inter-item blank. After each se-
quence, the grey screen displayed four colored buttons (four
rectangles of 6 cm long × 4 cm wide, and separated spaces of
1 cm) arranged in a quadrant, and participants clicked these
using a computer mouse to recall the sequence. Participants
indicated they had completed each sequence by pressing the
space bar. The screen then provided feedback with the mes-
sage “perfect” or “not exactly”, which the experimenter read
aloud to make sure the children would do their best the next
trial.

To estimate WM capacity5, participants received test se-
quences in two successive within-subject conditions: Simple
or Complex (order counterbalanced between participants). In
each condition, the sequences were three items long initially,
but progressively increased in length every four trials up to
a maximum length of 8 successive items. As such, partici-
pants could complete up to 24 test sequences (per condition),

4We used the function pwr.t.test of the pwr package in R (R Core
Team, 2017), with the parameters d = 1, sig.level = 0.05, type =
paired, alternative = two.sided).

5Memory tasks presented over short retention intervals can be
divided into two categories: short-term memory (STM) tasks (or
simple span tasks) where individuals are asked to just maintain
items (e.g., "keep in mind the following sequence: 7 4 3 9") and
WM tasks (or complex span tasks) where a processing task is added
(e.g., “keep in mind the following sequence: 7 4 3 9, while saying
continuously super”). Although STM and WM are estimated dif-
ferently, it has been shown that memory span tasks of both types
tap the same underlying construct (Colom, Shih, Flores-Mendoza,
& Quiroga, 2006; Unsworth & Engle, 2006), and so in the present
paper we refer to WM only (and do not distinguish it from STM).
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though testing in each condition was stopped after four con-
secutive errors at a given list length.

Using the R function ACSS, we assigned sequences to
each condition (Simple vs. Complex) by first computing (for
thousands of sequences of different lengths) their algorithmic
complexity (Kolmogorov, 1965; Li & Vitányi, 1997), which
inversely corresponds to their compressibility. The algorith-
mic complexity of a sequence can be thought as the shortest
algorithm able to reproduce it. Simple sequences can be en-
coded with short algorithms, and are therefore highly com-
pressible. In contrast, complex sequences can only be en-
coded with longer algorithms, and are less compressible. The
same R function also provided an estimation of the complex-
ity of all participants’ responses.6. From this set, sequences
in the Simple condition were at the 25th percentile of com-
plexity (a lower percentile would have produced sequences
of several similar colors), while those in the Complex con-
dition were close to the 100th percentile. Table 1 shows a
sample sequences given to participants. Note that the actual
colors were randomly chosen, after the pattern was selected
for the current trial (for instance, the pattern 112 could be dis-
played as blue-blue-red, green-green-red, or any other com-
binations). It must be emphasized that the four colors are
monosyllabic in French.

Each condition began with four warm-up sequences, in-
cluded to allow participants to get accustomed with the pro-
cedure. The warm-up sequences each featured two different
colors, as shown in Table 1. Warm-up sequences were pro-
grammed such that each of the four colors appeared at least
once in the first two sequences, and at least twice across all
four warm-ups. Participants were invited to respond slowly
during the first warm-up trial to make sure they responded
correctly. All participants succeeded in every warm-up trial.

In each new sequence, the positions of the colors in the
quadrant of response options were randomized to discour-
age spatial encoding (for instance red on north-west, blue on
north-east, green on south-west, and yellow on south-east,
but this configuration randomly switched every next trial).
To pace the task and to mimic the ergonomy of the original
game, whenever participants clicked one button of the quad-
rant, the color lit up to show a lighter color (e.g., the red
turned light red) for a brief duration (300 ms) during which
all buttons were disabled.

Scoring and Analysis. Participants’ spans were calcu-
lated using a refined partial-credit scoring system (Conway
et al., 2005), in which we computed the proportion of items
recalled at their correct position for each sequence. This pro-
portion was then multiplied by 0.25 points for each sequence
(i.e., since there was 4 trials per list length). These points
were summed across sequences to obtain an estimate of the
span. Two points were automatically granted to each partici-
pants to take into account the absence of one-color trials and
the successful warm-up trials. The maximum possible score

Table 1
Sample of sequences in the Simple and Complex conditions.
Note. After the warm-up trials, we only show one example of
sequence for a given length. The complete list of sequences
and their corresponding complexity is provided in the data
file on http://XXX-OSF-XXX.

Length (Simple) (Complex)

2
2
2
2

— End of Warm-up— — End of Warm-up—

3
4
5
6
7
8

was 8 (corresponding to the maximal sequence length).

Results

Table 2 shows the mean spans and transformed spans aver-
aged across participants as a function of age group, separated
by the complexity of the sequences (Simple vs. Complex).

Our main analysis tests whether WM develops at different
rates or at the same rate for simple and complex sequences.
Findings that WM develops at different rates for both kinds
of sequences would mean that compression-ability and stor-
age capacity both increase with age. In contrast, findings that
WM develops at the same rate for both kinds of sequences
would suggest that storage capacity increases with age, but
compression-ability does not. We also report some further
analyses using other techniques (detailed in the Appendix)
that follow up the main analyses.

All inferential statistics were run in JASP (retrieved from
http://jasp-stats.org/) with defaults parameters. We first an-

6We refer the reader to Gauvrit, Zenil, Delahaye, and Soler-
Toscano (2014); Gauvrit, Singmann, Soler-Toscano, and Zenil
(2015), who developed the technique consisting in first generating
billions of deterministic algorithms to obtain the Solomonoff-Levin
algorithmic probability of a string s. This method provides a reli-
able approximation of the algorithmic complexity of short strings
(see also Delahaye & Zenil, 2012; Soler-Toscano, Zenil, Delahaye,
& Gauvrit, 2013; Gauvrit et al., 2014) and the metric has already
proven useful in cognitive psychology (Chekaf, Gauvrit, Guida, &
Mathy, 2018; Dieguez, Wagner-Egger, & Gauvrit, 2015; Gauvrit et
al., 2015, 2014; Kempe, Gauvrit, & Forsyth, 2015).
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Figure 1. Mean spans averaged across participants and average ratios across participants between the two average spans
(LEFT side), and average z-scores based on the mean and standard deviations of the spans across age groups (RIGHT side),
as a function of age and complexity of the sequences. Note. Error bars are +/-1 standard errors.

alyzed the individuals’ spans using a two-way repeated-
measures analysis of variance with the within-subject factor
Complexity (Simple vs. Complex) and the between-subjects
factor Age group (6, 7, 8, 9, and 10); see Figure 1. The prin-
cipal goal of such analysis is to detect an interaction, without
which it could not be shown that WM develops at different
rates for simple and complex sequences. The results revealed
an effect of Age (F(4, 251) = 17.1, p < .001, η2

p = .21); the
posthoc tests with a Bonferroni correction showed signifi-
cant differences between ages whenever there was at least
a two-year gap between two age conditions. The results
also showed an effect of Complexity (F(1, 251) = 428, p <
.001, η2

p = .63) and an interaction between the two factors
(F(4, 251) = 7.2, p < .001, η2

p = .10). The interaction was a
bit weaker in analyses using the log of the data (η2

p = .06), but
still remained significant (p = .004). Given the interaction,
the subsequent analysis based on the ratios will provide more
information on whether Simple and Complex show different
slopes with age.

A Bayesian repeated-measures ANOVA (using the within-
subject factor Complexity and the between-subjects Age
group) confirmed that the full model (i.e., both factors in-
cluding the interaction term) showed evidence against the
null model (BF10 = 2.4e + 63) and the interaction term in-

creased the model probability (BFM = 3650). All other more
restrictive models had BFM inferior to 1.

We next ran a one-way ANOVA to test whether the Sim-
ple:Complex ratio increased with age. The ANOVA showed
a significant effect of Age group, but with a very small effect
size (F(4, 251) = 3.26, p = .012, η2

p = .05). The posthoc
analysis with a Bonferroni correction showed that this sig-
nificant difference was only due to a significant effect of
the difference between the 6-year-old group and the 9-year-
old group. The respective means and SE were 1.20 (0.04),
1.24 (0.04), 1.28 (0.03), 1.37 (0.04), 1.34 (0.04). The ratios
ranged from 1.2 to less than 1.4. This does not correspond
with a dramatic increase or with meaningful gain. Thus,
even though we found a significant effect of the Ratio factor,
which corresponded to a linear increase confirmed by a lin-
ear regression using a continuous variable Age (F(1, 254) =
10.2, p = .002,R2 = .04), the Bayesian ANOVA found no
evidence of the effect of Age group (BF10 = 1.8) on the
ratios.

We next examined z scores, computed separately for each
Complexity condition. This analysis was included to allow
us to detect coincidental growth curves, which would indi-
cate that WM develops at similar rates for simple and com-
plex sequences. Analysis of the z scores showed only a sig-
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Figure 2. Logistic regression of correct response as a function of sequence complexity and age (in months).

Table 2
Average spans and their ratio as a function of age group, with
standard errors in parentheses. Note. The last two columns
are the respective z-scores of the spans. The z transformation
was obtained by taking the overall mean and SD of each con-
dition of the complexity factor across age groups. The ratios
and z scores were computed for each participant before being
averaged.

Age Simple Complex Ratio zSimple zComplex

Partial-credit-scoring system

6 4.86 4.11 1.20 -.77 -.48
7 5.30 4.36 1.24 -.36 -.18
8 5.72 4.57 1.28 .03 .07
9 6.18 4.62 1.37 .45 .13

10 6.36 4.86 1.34 .61 .43

6 (.18) (.14) (.04) (.16) (.17)
7 (.14) (.11) (.04) (.13) (.13)
8 (.12) (.10) (.03) (.12) (.13)
9 (.11) (.10) (.04) (.10) (.13)

10 (.10) (.10) (.04) (.09) (.12)

nificant effect of Age group (BF10 = 6e + 8) and the in-
teraction term increased the model probability (BFM = 12).
No other model showed a BFM > 1. Therefore, the anal-
ysis based on the z score provides a conclusion similar to
the one using the ratios. However, as can be seen in Fig-
ure 1 (graph on right), there is no intuitive way to interpret
the differential developmental effect represented by the two
non-coinciding curves (the null hypothesis of an absence of
effect of the complexity as a function of age corresponds to
two coinciding curves).

To obtain more precise results, we also ran analyses using
continuous values of age-in-months and complexity level of
each sequence. Specifically, we conducted a logistic regres-
sion on all trials (N = 7454, scored as correct vs. incorrect
recalled sequence) as a function of complexity and age lev-
els. The logistic regression plotted in Figure 2 showed a sig-
nificant effect of age, a significant effect of complexity and
a significant interaction between the two variables. The re-
spective estimates were .04 (p < .001), -.19(p < .001), and
-.001 (p = .006) with an intercept of .44. The interaction is
visible in Figure 2 in which the detrimental effect of com-
plexity is more pronounced in younger participants than in
older participants. For instance, age did not affect the pro-
portion correct when the complexity was the highest (purple
lines), whereas older children most benefited from the se-
quences with the lowest complexity (yellow line). Again, as
demonstrated above, it does not mean that this gain was suffi-
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ciently important to correspond to different growths between
complexity conditions.

When we measured the actual algorithmic complexity
of the responses themselves and compared it to the orig-
inal complexity of the stimulus sequences, we observed a
lower average complexity across trials for the responses
(M = 14.1) than for the stimuli (M = 14.8), Mdi f f =

.66, t(7453) = −20, p < .001, dCohen = .23. The same anal-
ysis aggregated by participant produced a larger size effect:
Mdi f f = .63, t(255) = −12, p < .001, dcohen = .77. Figure 3
shows that this trend was stable with age. We observed no
correlation between age and the average difference of com-
plexity between responses and sequences, in both experimen-
tal conditions (Figure 3). In the Discussion, we suggest an
explanation for this reduction in complexity.

Discussion

Compressibility effect. We found that participants’
spans for simple and complex sequences of colors improved
with age. However, memory for simple and complex se-
quences improved at about the same rate. This finding was
revealed by our analysis of the ratios between children’s
memory for the simple and complex sequences. We also
found a main effect of complexity, as children showed bet-
ter memory for simple sequences than complex ones. This
difference suggests that children were able to compress in-
formation in the simple sequences. Further evidence that
children’s memory was aided by compression comes from
the finding that mis-remembered sequences were less com-
plex than the original sequences that children attempted to
reproduce.

Further evidence that children compressed the stimuli
comes from their patterns of error. As noted above, par-
ticipants’ generally erred by reducing the complexity of the
to-be-remembered sequences (i.e., their wrongly recalled se-
quences were simpler than the originals). This would not be
expected if participants’ had made random errors. In fact,
random errors would have led to the opposite result, and
would have increased the complexity of participants’ output
(recall that algorithmic complexity is the highest for random
sequences). Hence, one explanation for the observed reduc-
tion in complexity is that a compression process occurred.

Age-related increase in storage capacity . Our find-
ings support three main conclusions. First, they suggest that
with age, there is an increase in the storage capacity of WM.
Second, they suggest that children aged 6 are already able to
compress information in working memory. Third, they sug-
gest that, at least within the age range examined, children’s
ability to compress information does not improve with age.
We next expand on these three conclusions.

Our findings suggest an age-related increase in the stor-
age capacity of children’s working memory. This could stem
from an age-related increase in the number of chunks chil-

dren can encode7. Previous studies have also shown that
improvements in storage capacity remain when controlling
for chunking-ability or other strategies that could potentially
develop with age (Burtis, 1982; Cowan, Morey, AuBuchon,
Zwilling, & Gilchrist, 2010; Cowan, AuBuchon, Gilchrist,
Ricker, & Saults, 2011; Cowan, Morey, et al., 2010; Cowan
et al., 2015). Our results are generally consistent with such
findings, because we observed a similar rate of increase
across our conditions. The general growth we observed cor-
responds approximately to a 5% increase between age groups
(after computing the geometric mean of the growths ob-
served in the spans). For instance, had a material of average
complexity produced a base line span of 4.5 at 6 years old,
we could have expected a span equal to 4.5 × 1.054 = 5.5
at 10 years old with a constant 5% increase (the exponent 4
represents the 4 steps between the 5 age groups).

Our findings also suggest that children were able to com-
press information (at least for simple sequences) in WM.
We draw this conclusion from a somewhat novel feature of
our study. Specifically, the simple and complex sequences
both consisted of the same kinds of items, colored squares.
As such, the difference in WM spans we observed between
the sequences likely resulted because the simpler sequences
were more compressible than the complex ones. This is es-
pecially likely given that categorization of sequences as sim-
ple or complex was itself based on a measure of complex-
ity. Children’s superior memory for the simple sequences
therefore provides evidence of their ability to rapidly com-
press stimulus materials (see Kibbe & Feigenson, 2014a,
2016; Feigenson & Halberda, 2008 for previous evidence
of this ability in infants). This rapid process that seems to
take place exclusively in WM (since none of the color pat-
terns corresponded to pre-learned chunks) casts doubt that
chunking could be achieved by redintegration (Norris, Kalm,
& Hall, 2019). Redintegration would occur if participants
used information previously stored in long-term memory to
reconstruct degraded traces in working-memory. However,
this account cannot explain our findings because the patterns
were likely unfamiliar to participants, and hence not already
in their long term memory. Our findings instead suggest that
the sequences discovered on the spot are actively recoded
into chunks directly in WM.

The final major point suggested by our findings is that
children’s ability to compress sequences does not improve
with age. We chiefly base this conclusion on the ratio
between memory for simple and complex sequences. As
noted above, the simple sequences were more compress-
ible than complex ones. This means that improvements in
compression-ability memory should lead to greater improve-

7However, as noted above, increases in storage capacity could
also occur even if WM does not encode information in discrete
chunks (WM capacity could depend on a continuous resource ac-
cording to Bays et al., 2009).
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Figure 3. Difference in algorithmic complexity between the stimulus sequences and the participants’ responses as a function
of age, collapsed by participants and experimental condition (one dot = one participant in one condition).

ments in memory for simple sequences than for complex
ones. Against this prediction, we found that memory im-
proved at similar rates for both kinds of sequences. That is,
the Simple:Complex ratio did not substantially improve with
age and as such we cannot conclude that a concurrent opti-
mization process develops to alleviate the storage process.

As speculative as it might sound, the absence of increase
in storage optimization with age (i.e., better compression of
simpler sequences) in our results could mean that a greater
compactness of information could not be achieved by older
children, and as such, this suggests that chunk size did not in-
crease with age. To return to the boxes analogy, the number
of boxes available for packing possessions increased, but not
ability to arrange the possessions in the boxes. If this inter-
pretation of our results is correct, these findings are broadly
consistent with previous developmental studies which have
found that with age, children increase the number of chunks
they can recall, without a corresponding increase in the size
of the chunks (Cowan, Hismjatullina, et al., 2010; Gilchrist
et al., 2009; one exception is Ottem, Lian, & Karlsen, 2007).
However, our results (and those previous ones), might seem

to contradict other findings showing that adults benefit from
increases in chunk size (i.e., rather than increase in the num-
ber of chunks; (Cowan, Chen, & Rouder, 2004; Gobet &
Clarkson, 2004; Ericsson, Chase, & Faloon, 1980; Tulving
& Patkau, 1962)). But overall, we can reasonably expect
the cognitive system to favor an increase in chunk size once
working memory capacity in adults has reached a fixed ca-
pacity and all of these results finally appear consistent.

Limitations. One potential limitation of our finding re-
lates to children’s speech rate. Previous studies have shown a
clear relation between speech rate and memory span (Hulme,
Thomson, Muir, & Lawrence, 1984). This introduces a po-
tential confound for effects of age, because speech rate in-
creases with age. In fact, children with a high speech rate
have a span similar to adults with a low speech rate. This
is a concern for our study because participants were free to
encode items verbally. Higher speech rate could especially
have impacted results for simple sequences, as they included
more repetitions than complex sequences (e.g., it may be
faster to repeat ‘blue-blue’ than ‘blue-red’). However, we
do not believe that this potential confound undermines our
conclusions because higher speech rate with age would have
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especially favored the Simple condition and this should have
caused increasing ratios between the Simple and Complex
condition.

A more definite limitation is that because our sample of
children ranged between ages 6 and 10, our findings do not
speak to the working memory abilities of younger children. It
is possible, for example, that we would have found evidence
for improvements in compression-ability if we had included
younger children in our sample. The same reasoning also ap-
plies for children older than 10. Findings also might have dif-
fered with other kinds of stimulus materials. We have already
reviewed some benefits of having both simple and complex
sequences only consisting of colored squares. However, this
decision could limit the generalizability of our findings, as it
remains possible that improvements in compression-ability
might turn up for other kinds of stimuli. It is even possi-
ble that improvements in compression-ability would turn up
using a task removing the requirement that children recall
items in the correct order. One reason for this is that less con-
strained tasks may be more amenable to compression (e.g.,
items could be re-ordered more freely for optimal storage in
memory). We hope to address some of these possibilities in
future research.

The comparison of our findings with previous studies
(which for instance manipulated the number of chunks and
chunk size, see Norris et al., 2019) is only speculative be-
cause our method does not provide a direct measure of the
chunks formed by participants. In the present study, we still
do not know whether (or how) chunks were formed in ei-
ther of the experimental conditions. Algorithmic complex-
ity is not yet useful for determining how a sequence can
be optimally recoded into separate chunks. A similar is-
sue interests computer scientists who seek to split a file into
smaller chunks for optimizing cloud storage (Widodo, Lim,
& Atiquzzaman, 2017). Here, we simply assume that greater
compressibility most probably correlates with more occa-
sions to recode a sequence into chunks to optimize the stor-
age process. Transition errors probabilities could have been
computed (e.g., Johnson, 1969; Mathy et al., 2016) to de-
tect whether repetitions of colors helped participants better
recall the simple sequences, but this method can be decep-
tive (mainly because chunks do not necessarily correspond
to color repetitions only). Also, comparing the responses
and the stimulus sequences on a trial-by-trial basis requires
one to compute an alignment between the chunked responses
and chunked stimulus sequences (see Mathy & Varré, 2013).
However, alignment algorithms need to be parameterized
to indicate the plausibility of errors (deletions, substitution,
transpositions, insertions, etc). Such decisions would thus re-
quire estimating the probabilities of these errors for each age
groups to obtain the best alignments. We believe that this
method would bring more questions than actual responses.
Future work could attempt to identify the exact chunks par-

ticipants formed to better understand how they mentally re-
organized the material. Related to this, compression could
be related to prediction. Simple sequences contain regular-
ities that make them more predictable. Optimizing memory
through the prediction of ongoing to-be-encoded events is
not the same as compressing information after their encod-
ing. If participants expect more regular patterns as the pre-
sentation of a sequence progresses, this would facilitate the
retention of the sequences. One potential solution to this is-
sue would be that prediction and compression work together
as the sequence progresses to encode information optimally.

Conclusion. Our results are relevant for previous stud-
ies showing that recoding of information can operate on the
spot (Bor & Owen, 2007; Bower & Winzenz, 1969; Mathy &
Feldman, 2012). The rapidity of the recoding process does
not seem to depend much on whether chunking is explicit
(e.g., Ericsson et al., 1980; Gobet et al., 2001; Hu & Er-
icsson, 2012; Klahr, Chase, & Lovelace, 1983), or implicit
(Perruchet & Pacteau, 1990; Servan-Schreiber & Anderson,
1990). For instance, it has been suggested that children ac-
quire language by relying on such rapid chunking mech-
anisms (Perruchet, Poulin-Charronnat, Tillmann, & Peere-
man, 2014; Saffran, Aslin, & Newport, 1996), that might
help them compress information rapidly to deal with the del-
uge of linguistic input (Chater, Clark, Goldsmith, & Per-
fors, 2015; Christiansen & Chater, 2016). Rapid chunk-
ing appears to be a fundamental process found in pigeons
(Terrace, 1987), infants (Kibbe & Feigenson, 2016; Feigen-
son & Halberda, 2004, 2008), and toddlers (Kibbe & Feigen-
son, 2014b). Future studies could thus further study whether
the capacity to recode on the spot information into separate
chunks can subserve a potential compression process that the
present study aimed to highlight in children.
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Appendix

We posit that if optimization of storage capacity develops
with age (i.e., due to improvements in compression-ability),
then WM should improve at a greater rate for simple se-
quences than for complex ones. If not, WM should improve
at approximately similar rates.

In the main text, the main method we used to test be-
tween these two possibilities was examining whether the
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Simple:Complex ratios changed with age. Here We argue
that the ratio analysis is the most convenient to detect dif-
ferent rates. Let’s imagine that an old 1-liter engine used to
produce 100 horse powers, but has been upgraded so that it
now produces 120 horse powers. In comparison, an old 2-
liter engine used to produce 150 horse powers, but has been
upgraded so that it now produces 180 horse powers. The
absolute difference is larger for the 2-liter engine. However,
as both new engines increased power by 20%, it would be
unfair to say that the larger engine has been better optimized
than the first. To conclude that one engine was optimized
more than the other, we cannot look to the magnitude of
improvement. Instead, we should look to the relative gain
that can be measured by ratios or odds-ratios. Here, the ratio
130 : 100 = 1.3 is superior to 180 : 150 = 1.2, with odds-
ratio (130 : 100) : (180 : 150) > 1). One needs to take into
account the size of the engine to get a sense of proportion
and we believe the same reasoning applies to the measure of
WM storage capacity.

Here we present three analytic approaches for examin-
ing...:

1. Detecting increasing ratios of the spans. Constant
ratios are the signature for proportional growths and
increasing ratios can represent different rates of im-
provements intuitively.

2. Detecting identical z-scores of the spans. Identical z
scores correspond to proportional growths.

3. Detecting an interaction after a logarithmic transfor-
mation of the spans. The interaction detects different
growth rates.

The method based on the spans’ ratios is straightfor-
ward. For instance, doubling capacity for simple stimuli
at a younger age, but tripling capacity at an older age, no
matter the base line. The spans’ ratios (span for the Simple
condition divided by span for the Complex condition) can
provide an intuitive estimate of chunk size. If children at a
given age succeed in doubling their span in the simpler con-
dition, it means that they can compact twice as much infor-
mation than in the complex condition. If this ratio is greater
for older children, we can assume that the material benefited
from a greater compactness. Also, the odds ratio are conve-
nient to indicate for instance that older children could com-
pact 3/2 = 1.5 times more material than younger children.

The method using z scores is less direct than computing
the spans’ ratios; z scores are easy to interpret when they per-
fectly coincide (when the curves overlap, they reflect equiva-
lent rates of development). However, they are more difficult
to interpret when the scores do not coincide (for instance,
when crossing curves are obtained, like in our results).

The method based on logarithms might leave the impres-
sion that the radical non-linear transformation is a way to

cheat with numbers, whereas they simply transform propor-
tional growths into similar growths. The logarithm (no mat-
ter its base, since LOGa(x)LN(a) = LN(x)) is an interest-
ing transformation of the data to capture a multiplicative ef-
fect (such a transformation places numbers into a geometric
domain for numbers that are multiplicative by nature; see
Kerkhoff & Enquist, 2009). The log transformation is thus
informative when for instance it reveals parallel curves. The
method can also capture different growths if one interaction
is present after the log transformation. Still, most readers do
not appreciate juggling from multiplicative effects to additive
effects. For that reason mainly, a non-linear transformation
of the data using a logarithm might not be the most direct
approach and we conclude with the idea that computing the
ratios remains best.
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