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The time-based resource sharing (TBRS)model is a prominentmodel ofworkingmemory

that is both predictive and simple. TBRS is a mainstream decay-based model and the most

susceptible to competition with interference-based models. A connectionist implemen-

tation of TBRS, TBRS*, has recently been developed. However, TBRS* is an enriched

version of TBRS, making it difficult to test general characteristics resulting from TBRS

assumptions. Here, we describe a novel model, TBRS2, built to be more transparent and

simple than TBRS*. TBRS2 is minimalist and allows only a few parameters. It is a

straightforward mathematical transcription of TBRS that focuses exclusively on the

activation level of memory items as a function of time. Its simplicity makes it possible to

derive several theorems from the original TBRS and allows several variants of the refresh

process to be tested without relying on particular architectures.

1. Introduction

Working memory is often described as a unique cognitive resource serving both short-

termmaintenance and processing (Baddeley, 2003). Thus, it is central in problem-solving

(Swanson & Beebe-Frankenberger, 2004). Working memory is known to be mediated by

the prefrontal cortex (Braver & Bongiolatti, 2002; Kane & Engle, 2002; Prabhakaran,
Narayanan, Zhao, & Gabrieli, 2000) and is clearly linked to intelligence (Conway, Cowan,

Bunting, Therriault, & Minkoff, 2002; Engle, Tuholski, Laughlin, & Conway, 1999),

particularly when complex span tasks are used (Unsworth, Redick, Heitz, Broadway, &

Engle, 2009).

The complex span task paradigm is probably the most widespread dual procedure for

measuring working memory (Conway, Kane, Bunting, Hambrick, Wilhelm, & Engle,

2005). In complex span tasks, participants are presentedwith items to bememorized, and

instructed to recall them at the end of the trial in the correct order. In contrast to simple
span tasks, the presentation of the memory items is interspersed with a concurrent task

that presents distractor items. Participants thus alternate between encoding memoranda

and processing distractors.

A variety of concurrent tasks have been used, including reading sentences (van den

Noort, Bosch, Haverkort, & Hugdahl, 2008), reading digits (Barrouillet, Bernardin, &

Camos, 2004), verifying arithmetic statements (Redick et al., 2015; Turner & Engle,

1989), uttering predetermined syllables (Lewandowsky, Geiger, Morrell, & Oberauer,
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2010), and diverse elementary tasks involving executive functions such as memory

retrieval, response selection, and updating (Barrouillet, Portrat, &Camos, 2011). A critical

feature for determining the validity of complex span tasks is the degree of control the

experimenter has over the time devoted to processing the distractors or encoding the
memory items (Oberauer & Lewandowsky, 2011). In this respect, a computerized version

of a complex span task (Barrouillet & Camos, 2007) offers fine control over a participant’s

processing timeline.

In a computerized version of the complex span task, participants are, for instance,

required to memorize a series of items appearing on a screen sequentially. Each item is

displayed once for a fixed amount of time (often fixed to 1 s). Between these memory

items, participants must perform a second task. For instance, for the second task, a

participant could see a ‘2’ for a short period, then ‘+3’, then ‘�1’, and be required to
update the digit 2 into 5 and then 4. At each step, the participant is instructed to verbalize

the current result of the series of arithmetic operations. At the end of the trial, the

participant must recall the items to be memorized in order at their own pace. A trial for a

list of two letters would look like this: L, 2, +3,�1, H, 3, +1,�2, Recall. A correct response

would be ‘LH’ in that case.

Barrouillet et al. (2004) developed the time-based resource sharing (TBRS) model to

specifically account for the performance of participants in such experiments. The key

ideas First, unless attention is focused on the memorandum to refresh the memory items,
their memory traces fade away. Second, because of a bottleneck effect, attention can be

devoted only to either refreshing the memorandum item by item or processing the

distractors. Thus, participants perform rapid switches between refreshing items and

performing the concurrent task. Third, the probability that an item is correctly recalled is a

function of the item cognitive load, defined as the proportion of time that cannot be

devoted to refreshment of the item. Fourth, temporal factors (instead of the competition

between items) are preponderant, especially in tasks designed to limit interference

(Barrouillet & Camos, 2012; p. 414), even though interference is acknowledged and
studied within the model (Camos, Mora, & Barrouillet, 2013; Portrat, Guida, Ph�enix, &
Lemaire, 2016).

Time-based resource sharing has received much qualitative empirical support

(Barrouillet & Camos, 2012; Barrouillet, Gavens, Vergauwe, Gaillard, & Camos, 2009;

Portrat, Barrouillet, & Camos, 2008; Vergauwe, Barrouillet, & Camos, 2009). However,

although it is both simple and rooted in a set of clearly stated hypotheses, the model

remains underspecified. First, it does not indicate how long the refreshment period

(between two switches) lasts for an item andwhether this duration is fixed or determined
by specific factors (but see below for more details about this issue). It also does not

indicate what happenswhen the refreshment has been interrupted by a distractor, that is,

whether people start refreshing the first item anew or continue from the last refreshed

item, and so forth. Second, although TBRS is described in detail in several publications

(Barrouillet&Camos, 2007; Barrouillet et al., 2004), it has remained a theory basedmostly

on a verbal description (until recently; see below). This is unfortunate because it reduces

opportunities to test the model and use statistical criteria of fit (Pitt & Myung, 2002).

Moreover, because building a mathematical description of TBRS is easy and straightfor-
ward, verbal descriptions alone should be avoided (Farrell & Lewandowsky, 2010; Norris,

2005; Pothos & Wills, 2011).

Oberauer and Lewandowsky (2011) have developed the only available computational

implementation of TBRS, called TBRS*, a two-layer connectionist network. One objective

of the authors was to bridge existing computational models of working memory with
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prominent features of TBRS. Although the model was found to fit experimental data, the

authors remain sceptical about TBRS in their conclusion.

TBRS* is an important step towards a precise quantitative validation of TBRS; however,

itmay be amodel that is too enriched compared to the original TBRS. Some caveats should
therefore be kept in mind. First, TBRS* merges features from TBRS and other models.

Hence, if it fails at predicting empirical data, it would be unclear whether this failure

should be taken as evidence against TBRS or against other features related to the specific

implementation. Second, because TBRS* is an enriched model, some decisions were

made (e.g., serial position coding) that would be unnecessary for defining a more basic

implementation of TBRS. Last, connectionist networks can be seen as ‘black boxes’ and

may lack transparency (Shahin, Jaksa, & Maier, 2009), making it difficult to formally

demonstrate results that nonetheless follow from the TBRS framework.
Here, we present a new mathematical implementation of TBRS (henceforth TBRS2)

designed to remain as close as possible to the TBRS assumptions. The approach developed

here is radically different from the one underlying TBRS*.1 On the one hand, our

implementation is not as rich as TBRS* and cannot account for as many features, as we do

not address any question not already addressed in the TBRS verbal description. For

instance, we do not aim to code the order of items in any way, but stick to predicting the

correct recall of each item. On the other hand, TBRS2 has two interesting features. First,

we must only determine the decay function of memory traces and schedule of
refreshment, that is, two decisions; whereas TBRS* must make 11 such decisions. In

the same vein, our model needs four parameters, whereas, TBRS* needs no <10. Second,
TBRS2 dynamics are more transparent than those of TBRS* because they rely on a mere

analytical translation of the TBRS assumptions instead of a connectionist model. Thus, we

can mathematically prove certain consequences of the TBRS assumptions, such as

functional entanglement between the decay and refreshment functions.

In Sections 2-4, wewill describe TBRS2 and prove certain theorems directly following

from the TBRS assumptions. Six variants of TBRS2 will then be described that vary
depending on how the refreshment process occurs. In the final section, we will use

empirical data to illustrate how TBRS2 can be used in future research to test TBRS

quantitatively and precisely.

1 TBRS* is governed by the core theoretical assumptions of TBRS, but the authors also acknowledge that their
model was based on more specific modelling decisions such as opting for positional coding to represent order
(meaning that each item is associated to a positionmarker inTBRS*). This specificoption for themodel suffices to
complexify the original model, and renders the model less handy. For instance, the authors specify that (1)
position markers are predefined representations of serial positions, (2) neighbouring position markers are
assumed to be similar to each other, (3) representations of positionswere distributed using overlapping patterns
of activation for which similarity decreased with distance, and (4) a random pattern was generated for the first
position and subsequent patterns for next positions were derived by changing a random subset of the precedent
pattern. Also, all processes (e.g., refreshing, processing of distractors) were governed exponentially over time,
and time spent on a given process was finished when a latent variable had reached a criterion, based on
accumulator models of response time, and processing rates were drawn from a Gaussian distribution. The
authors specify other implementations for encoding (items are associated to their position by hebbian learning),
item errors (themodelwas augmented by introducing a threshold for retrieval as a newparameter to account for
omissions), response suppression (response suppression was implemented by hebbian anti-learning), etc.
Therefore, themodel is farmore complex, even if similar parameters are present such as processing rateR, decay
rate D, refreshment duration, s. However, in contrast to TBRS2, TBRS* does not require a baseline activation
because the encoding of an item and its association to a position are governed by hebbian learning, starting from
zero. However, a crucial difference is that TBRS* uses a baseline owing to response suppression, where the
strength of an item is equal to zero, whereas TBRS2 does not require such a limit to predict recall probability.
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2. Overview

Figure 1 provides a general overview of TBRS2. First, a complex span task (as described
above) can bemodelled by a ‘task function’, that is, a function of time indicatingwhether a

memorandum is presented, a processing task is performed, or neither of these events

occurs, at time t. When an item is presented, attention focuses on the item (according to

TBRS). When a processing task is performed, the attentional focus is drawn away from

memoranda. The remaining ‘spare’ time is dedicated entirely to refreshing items. How

refreshment of the items is spread along the timeline depends on a strategy that TBRS

leaves unspecified. Once a decision is made about the refreshment schedule, we can

derive a ‘focus function’ from the task function. The focus function is a function of time
indicating attentional focus (towards processing or encoding/refreshing an item). The

graphical example given in Figure 1 is based on the assumption that each item is refreshed

for a fixed duration, starting anew from the first item after each interruption.

Once the focus function is set, we can derive the activation dynamics of each item.

Here, activation stands for the odds of correct recall of an item at a given time, that is, the

odds that the itemwould be recalled if the participants had to recall it at time t. The focus

function translates into the activation dynamics through the decay and refreshment

functions: when attentional focus spots item xi, the activation of xi increases by the effect
of refreshment. Otherwise, the activation decreases by the effect of time. As we will

demonstrate below, the TBRS assumptions impose a direct link between the decay and

Figure 1. Overviewof TBRS2’smain functions. Complex span tasks aremodelled by a task function

indicating what is happening along the timeline (presentation of a newmemorandum [A or K], free

time [white], or processing tasks [black]). From the task function, we can derive a focus function

indicating how attentional focus switches from items (colour) to processing distractors (black). To

translate the task into focus, we must specify how spare time is used (e.g., how long each

refreshment period lasts). Activation is the odds of correct recall for a given item and can be derived

from the focus function as soon as the decay and refreshment rates are set. [Colour figure can be

viewed at wileyonlinelibrary.com]
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refreshment functions. In the following, we will present further details about the model,

starting from the link between the focus function and activation, and then turning to the

task functions and their relations with the focus functions.

3. From focus function to activation

Let us consider a situation in which a sequence of items (x1, . . . , xk) is to be memorized

within a period of time [0, T]. At any instant t2 [0, T] after its presentation, item xi has an

activationai(t), heredefined as the odds that xiwouldbecorrectly recalled at time tby the

participant, who would be required to recall items at this point in time.

3.1. The dynamics of activation

We later assume that thedecay ofmemory traces (i.e., activation) is exponential, following

previous studies (Bolhuis, Bijlsma, & Ansmink, 1986; Wickelgren, 1970; Zylberberg,

Dehaene, Mindlin, & Sigman, 2009). However, we first consider a more general case of

decay to prove a general link between the decay and refreshment rates that follows from

the TBRS hypotheses. When attention is focused towards item xi, the corresponding
activation increases in such a way that ai is a solution of an autonomous differential

equation y0 = R(y). The refreshment function R is continuously positive and does not

dependon i. Theprevious equationonly formalizes the idea that the refreshment rate does

not depend on time per se, but on the current activation of the item. Likewise, when

attention is drawn away from xi, ai decreases following an autonomous differential

equation y0 = �D(y), where D is a continuous positive function independent of i.

Two remarks should be made here. First, the decay and refreshment of an item

activation are independent of the activation of other items. This ensues from the TBRS
assumption that temporal factors are preponderant. Second, we do not define an

activation threshold under which thememory trace is permanently lost, such that there is

no true forgetting. This counter-intuitive phenomenon is the consequence of the TBRS

assumption that the probability of recall is a function of the cognitive load.2 The absence

of threshold (i.e., the absence of irremediable forgetting, theoretically) is psychologically

implausible. However, one should keep in mind that this is a mathematical consequence

of a strict application of the cognitive load assumption, not a psychological assumption;

that even if the mathematical model contains such a feature, it might still be reliable in
predicting recall in ecological situations; and that the theoretical possibility of retrieving

any item in memory, however low its activation, does not imply an item can always be

retrieved in practice.

3.2. Focus function and cognitive load

Let us first define a function describing the dynamics of attentional focus with respect to

an item xi.

2 Imagine a task in which one has to memorize a single item, with an alternation of free time and task processing
each second. The item can be kept in memory as long as needed, say 60 s. Then, imagine another task in which
the participant is continuously distracted for 30 s, and then has 30 s of spare time. Because of the cognitive load
assumption, the probability of recall should be the same in both examples, the cognitive load being 50% in both
cases. Thus, the item is not lost in 30 s (or, in fact, in any duration).
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Definition The focus function φi of item xi is defined as φi(t) = 1 if the item is being

refreshed at time t (i.e., attention is focused on xi), φi(t) = 2 if item xi is displayed at time t,

and φi(t) = 0 otherwise.3

Definition The item cognitive load associated with item xi on time interval [t0, t1] is

defined as the proportion of time not devoted to the item, that is,

CLiðt0; t1Þ ¼ lf½t0; t1� \ u�1ð0Þg
t1 � t0

; ð1Þ

where l is the usual Borel measure and φ�1
(0) is the set of all instants t such that

φ(t) = 0. Thus, l{[t0, t1] ∩ φ�1
(0)} is the amount of time not devoted to refreshing item

xi between t0 and t1.

Note that, when computing this cognitive load,wewill always assume that item xiwas

presented before t0 (and thus does not appear during [t0, t1]).
The TBRS model’s core assumption is that ai(t1) depends only on CLi(t0, t1) and its

initial value ai(t0). From this cognitive load assumption, a relation between D and R can

be derived.

Theorem 1. Under the cognitive load assumption, R andD are proportional: R = jD,
j 2 R�

þ.

Proof. Consider a situation in which a unique item (x) is to be remembered at time T, and

such that attention is drawn away from x except on an interval [s, s + h] (think of h as

‘small’).

The activation a(t) is thus decreasing on [0, s] and [s + h, T], but increasing on

[s, s + h]. The cognitive load at T does not depend on s 2 [0, T � h], thus a(T) does not

depend on s either.
There exists a single e > 0, such that a(s + h + �) = a(s), where e is the time needed for a

to go back down to the level it was at s, before refreshment. The cognitive load assumption
implies that h+e is independent of either s or y = a(s).

Whenh?0, so does �. Let d = a(s + h) � a(s). Considering a(t) on [s, s + h],we find

d
h
�! RðyÞ:

Considering a(t) on [s + h, s + h + �], we have

d
�
�! DðyÞ;

thus,

�

h
�! RðyÞ

DðyÞ :

Because h and � are independent of y if the cognitive load assumption is satisfied, we

must have R = jD, j ¼ limð�=hÞ 2 R�
þ: h

3Note that φi(t) = 2 is only dummy code ascribed to a particular event.
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Thus, D and R are proportional under the cognitive load assumption expressed in the

TBRS model. This is a mathematical consequence of a main TBRS hypothesis that has

never been expressed.

3.3. Exponential decay

For the sake of simplicity, we suppose thatwhenever an item is first presented, its activation

equals a constant baseline value b during presentation (this does not impair the generality of

TBRS2, provided that the presentation duration is constant across memoranda).

Henceforth, we will also assume that the decrease in activation is exponential, which

amounts to saying thatD is a linear function. FromTheorem 1,weknow thatR is then also

a linear function (i.e., the refreshment is exponential). In other words, if attention is not
focused on item xi, then ai(t) / exp (�dt), where d is the (absolute) decay rate. If

attention is focused on xi, then ai(t) / exp (rt), where r is the refreshment rate. For

exponential decay, an easy way to study the probability of a correct recall is to consider

log-odds instead of activation levels (odds). Indeed, if activation decay is exponential, then

log-odds evolution is linear, with slope r and�d; hence, the following theorem (the proof

is immediate).

Theorem 2. Suppose that at time t0, an item x1 has activation a1(t0). Let φ1 be its focus
function. If the item is never presented during period [t0, t], then

logða1ðtÞÞ ¼ logða1ðt0ÞÞ � dðt � t0Þ þ ðd þ rÞ
Z t

t0

/1ðuÞdu: ð2Þ

Figure 2 displays two simple examples of activation dynamics. The plots were made

using the tbrs function in R4 (R Core Team, 2016). Alternatively, one can use our user-

friendly online Shiny application.5
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Figure 2. Examples of activation dynamics predicted by the model, with a focus on attention

switching on and off of thememory itemevery second. During the first second, the item is presented

and log-activation is set to 2. Two different sets of conditions (d, r) are presented. Thememory trace

fades away when (a) d < r, but not when (b) d > r. [Colour figure can be viewed at

wileyonlinelibrary.com]

4Available at https://github.com/ngauvrit/tbrs.git
5https://mathematicalpsychology.shinyapps.io/tbrs
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4. Task function and task cognitive load

So far, we have considered the case of a single memorandum. However, TBRS was
designed to predict item recall in more complex tasks in which several items (x1, . . . , xn)
are to be remembered.

Definition Define a task function as a function T of time, with T(t) = �1 if the

concurrent task is beingperformed at t; T(t) = 0 if no concurrent task is to beperformed at

t with no item presented; and T(t) = k, where k 2 {1, . . . , n}, if item xk is being

presented at time t.
For such a task, the cognitive load is the proportion of time exclusively devoted to the

concurrent task on a given interval,

CLðt0; t1Þ ¼ lf½t0; t1� \ T�1ð�1Þg
t1 � t0

; ð3Þ

wherel is the usual Borelmeasure and T�1(�1) is the set of all t such that T(t) = �1. Thus,

lf½t0; t1� \ T�1ð�1Þg is the amount of time not devoted to the concurrent task, which

means that this amount of time is devoted to refreshing the memoranda.

4.1. An invariant

Consider a task function T and time interval [t0, t1] on which no item is presented. Part of

this time [CL(t0, t1)] is dedicated to the concurrent task, but the rest is devoted to the

refreshment. Because the refreshment may be distributed among the different items in

various specific time courses, the activation at time t1 might vary. Consider, for instance,

the case of two items x and y. If the refreshment is dedicatedmainly to x during spare time,

then we expect a high probability of recall for x and a low one for y; however, the reverse

case is to be expected if the refreshment is dedicatedmainly to y. Thus, how ‘spare time’ is
distributed among the items is an important question for making quantitative predictions.

However, because every brief pause is assumed to be dedicated to attentional

refreshment, the product of activations is an invariant:

Theorem 3. If no new item is presented on an interval [t0, t1], and n is the number at

time t0 of items to be remembered, then

Yn
i¼1

aiðt1Þ

does not dependonhow the refreshment time is distributed on [t0, t1]; it depends only on

∏ ai(t0) and CL(t0, t1).

Proof. Consider log (ai). On any interval dedicated to a dual task, ai is decreasing, with

slope �d, for all i. Thus, the sum
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SðtÞ ¼
Xn
i¼1

logðaiðtÞÞ ð4Þ

is a linear function with slope �nd. On any interval on which attention is focused on

an item, S(t) is also linear, with slope r�(n�1)d. Therefore, we have

Sðt1Þ � Sðt0Þ ¼ �ndðt1 � t0ÞCLðt0; t1Þ þ ðr � ðn� 1ÞdÞðt1 � t0Þð1� CLðt0; t1ÞÞ: ð5Þ

Considering the exponential completes the proof. h

4.2. Simple span

The parameters r and d are directly related to simple span (memory capacity), defined as

the maximum number of items one can maintain in memory when no concurrent task is

involved. More precisely, the theoretical simple span k can be computed using a simple
formula, as shown by Theorem 4. Using this formula, we can estimate a participant’s

simple span from any data gathered through a complex span task, and thus again test the

TBRS assumptions.

Theorem 4. Let k be the simple span (memory capacity) corresponding to a set of

parameters. We have

k ¼ 1þ r

d

j k
;

where bxc is the floor function (i.e., the largest integer smaller than or equal to x).

Proof. Consider a simple span task, inwhichn items are presented sequentially beginning

at t = 0, and involving no dual task. Let t0 be a time at which the n items have been

presented. Then CL(t0, t) remains null, and thus

SðtÞ ¼ Sðt0Þ þ ðr � ðn� 1ÞdÞðt � t0Þ; ð6Þ

where

SðtÞ ¼
Xn
i¼1

logðaiðtÞÞ:
Thus, S(t) tends to �∞, depending on the sign of r�(n�1)d.

If r�(n�1)d > 0, or n < 1 + r
d
, then S(t) tends towards ∞, as does

Y
aiðtÞ ¼ expðSðtÞÞ:

If n > 1 + r
d
, then S tends towards �∞, and

Y
aiðtÞ �! 0:
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We have thus proven that Yn
i¼1

aiðtÞ �!
t!10

if n[ 1þ r
d
, and

Yn
i¼1

aiðtÞ �!
t!11

if n\1þ r
d
.

If n items can be maintained in memory, then no activation tends towards 0, and thusQn
i¼1 aiðtÞ does not tend towards 0, which means that n ≤ 1 + r/d. Thus, k ¼ b1þ r

d
c is

the maximum number of maintainable items (i.e., the simple span). h

4.3. Summary

We implemented the assumptions expressed in the TBRS model in a mathematical

framework based on the following axioms:

1. Attention is always focused on a single item to be remembered or on a concurrent
task.

2. Activation of item xi increases when attention is focused towards xi and decreases

otherwise. The rate of decay/increase is a function of the current activation.

3. Activation of item xi at time t is a function of the cognitive load on [t0, t], provided that

item xi is presented before time t0.

4. Activation decreases exponentially.

From these axioms borrowed from TBRS (except for the exponential decay), we

derived the following mathematical consequences:
1. The refreshment rate is exponential.

2. Given activations (a1(t0), . . . , an(t0)) at time t0, and provided that no new item is

presented after t0, the product of the activations at time t > t0 does not depend on

how the refreshment time is distributed across the memory items.

3. The refreshment rate r, decay rated, and simple spank (which is themaximal number

of items that can be maintained in memory in a simple span task) are linked by the

straightforward relation

k ¼ 1þ r

d

j k
:

5. Variants of the TBRS model

A given task defined by a function T leads to a time-dependent focus vector (φ1(t), . . . ,
φn(t)).

The TBRS assumptions require that for any i 2 {1, . . . , n},
1. φi(t) is undefined, if item i has not yet been presented at t;

2. φt(t) = 0 (or is undefined), if T(t) = �1;

3. φi(t) = 2 (and φj6¼i = 0 or is undefined), if T(t) = i; and

4. (φ1(t), . . . ,φn(t)) has exactly one component equal to 1, and all others are equal to 0 or

undefined, if T(t) = 0.
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The last point expresses that whenever no item is being presented, and when no

concurrent task is required, attention is focused on one of the items to be remembered.

However, it does not predict how spare time is distributed among items. We will now

define six variants of the TBRS2model based on how the spare time period is organized to
deal with the memory items.

5.1. Steady versus threshold

A first distinction can be made regarding how long an item is refreshed when attention is

focusedon it.AvariantofTBRS2 thatwewill call steadyposits that the refreshmentduration is

a fixed value (for instance, d = 0.2 s). Another variant (the threshold model) posits that

whenever attentional focus switches to anew item, it does sountil activationof this particular
item reaches a thresholdw (unless attentional focus is directed away by a concurrent task).

Figure 3 shows examples of predicted activation dynamics in the case of a simple span

task for the steady and threshold variants. In these examples, the steady variant predicts

more variability in the final probability of recall than the threshold variant, if the number of

items (here, three) is below the simple span. However, it predicts greater variability if the

number of items (here, four) is above the simple span.

5.2. First, next, or lowest

The TBRS2 model can also vary in how it handles interruptions caused by concurrent

tasks. During ‘spare time’, items are refreshed in a regular order: item1, item2, item3, . . . ,
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Figure 3. Variants of TBRS2 predictions for a simple span task. We set d = 0.6 and r = 1.4. In the

steady variant, refreshment of an item lasts 0.4 s, whereas in the threshold variant, refreshment

stops when activation reaches a cut-off point, or after 0.1 s (i.e., the refreshment lasts 0.1 s if the

activation is already above the threshold at the beginning of the refreshment period). [Colour figure
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itemn, item1 . . .. However, there are differentways to select the item to be refreshed after

an interruption is caused by the concurrent task.Wewill consider three simple variants. In

the first variant, the first item x1 is always refreshed first after the presentation of a

distractor. In the next variant, the model keeps track of the last refreshed item and
continues with the next one. For instance, if the concurrent task occurs while item 2 is

refreshed, then item 3 will be refreshed after the interruption. Finally, the lowest variant

predicts that the item with the lowest activation is refreshed first. This could correspond

to a ‘maximin’ strategy in which one tries to maximize the minimal activation.

Depending on how dual task interruptions are spread in time, these variants may lead

to different predictions that could hardly bepresentedby a verbal theory. A few illustrative

examples are shown in Figure 4. With a particular task (alternation of a concurrent task

and spare time every 2 s), visual inspection reveals different predictions depending on the
variant. The first version predicts a primary effect, whereby the first item is more likely to

be recalled. Thenext versionpredicts a recency effect,whereby the last item ismore likely

to be recalled. Finally, the lowest version predicts similar decreases in activation among

items and no clear-cut order effect.

6. Parameter estimation and model comparison

Time-based resource sharing is underdefined when it comes to two characteristics. First,

the question of refreshment duration remains unclear. TBRS assumes the refreshment
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at presentation is set to 2). Here,we simplify a complex span task by putting thememory items at the
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duration of an item to be such that the item will survive the next processing episode

(Barrouillet & Camos, 2014). This is not directly usable in our model for two reasons. One

reason is that there cannot be a formal threshold under which an item is totally lost in the

model (still, we adapted this idea in the ‘threshold’ variant of the model). The other is the
model should apply generally, that is, even in tests where processing episodes cannot be

anticipated by participants (when a task, such as the one we run here, does not show

regular patterns of switching between storage and concurrent task). Therefore, although

the idea that participants can anticipate forthcoming processing episodes in order to

better adapt refreshment strategies accordingly is psychologically plausible, it cannot be

integrated unmodified in a more general version of the model, enabling unpredictable

timelines. As mentioned above, we suggest twomodels concerning refreshment duration

(steady and threshold).
Second, TBRS does not detail how the item to be refreshed is determined after an

interruption. We thus consider three versions of the model regarding this point (first,

steady and lowest). Combining these possibilities (two versions regarding refreshment

duration and three versions regarding which item to refresh after an interruption), we

construct six versions of TBRS2. In the following, we analyse experimental data using

these variants. Note that all six variants have the same number of parameters (four), as

follows:

1. decay rate d, expressed in points of log-odds per second;
2. refreshment rate r, also expressed in points of log-odds per second;

3. baseline b, which is the activation of an item when presented; and

4. duration (of the focus of a particular item) or threshold w.

In this section, we use empirical data to illustrate how the formal framework of TBRS2

can be used to compare models, estimate parameters, and gauge TBRS assumptions. The

following analyses are includedhere for illustrative purposes, as an example showing how

a particular example of data relevant to TBRS can be used and analysed.

6.1. Method

Thirty-two psychology students aged 18-29 years (M = 20.83, SD = 2.58) were recruited

to take part in the experiment for course credit. Each participant performed a series of

complex memory span task trials. In contrast to previous experiments in which the dual

task is regular, the present dual task was semi-randomly organized along the timeline to

test TBRS using the most diversified patterns of distraction.

6.1.1 Procedure

The stimuli were capital letters (B, F, H, J, K, L, P, Q, R, S, V, X) chosen for having few

phonological similarities in French. The stimuli were displayed visually on a computer

screen. Each list was composed of a maximum of six letters that were drawn without

replacement. After each letter, a concurrent task required the participant to press the

space bar whenever a 1, 2, or 3 stimulus digit was displayed. The stimulus digits were

drawn randomly from the 1–9 set. The concurrent task occurred during a free time
duration that was randomly drawn between 1 and 5 s (‘free time’ indicates only that the

participant was not presented with the stimulus letters to be recalled, but does not imply

that they were free enough to refresh the letters, as explained below). This free time was

158 Nicolas Gauvrit and Fabien Mathy



divided into 1,000 ms time slots during which attention capture could occur. For each

slot, there was a chance for a distractor to be presented.

Each experimental session lasted approximately half an hour and included 60 separate

stimulus lists. The 60 lists were built as follows: the length varied from two to six letters,
and difficulty varied fromeasy to difficult. Therewere six different difficulty conditions for

the concurrent task, based on six different probabilities (0, .20, .40, .60, .80, 1) that one

stimulus digit would be drawn during each slot of the free time period. Once a probability

was set for a list, it was applied to the entire list across the slots. This generated 5 (length)

9 6 (difficulty) = 30 conditions, which we doubled to give each participant 60 lists to be

recalled. For instance, if a 5 s free time duration, divided into five slots of 1,000 ms each,

was chosen between two letters for a given list, and the probability was set to .80, the

probability that one digit could be displayed in each of the five time slots was .80. This
could, for instance, generate a 90,827 sequence (with the ‘0’ symbol indicating a period of

1,000mswithout any distractor). The letters and the digits to be captured (1, 2, or 3)were

always followed by an ‘empty’ slot to avoid building sequences that would be too

cluttered. An example of a sequence is K01050V02087X000Q980. The participants could

enter their response by clicking on a visual keyboard of 3 9 4 letters. The letters were

always associated with the same positions on the keyboard across trials. The letter

disappeared after being clicked, so the participants were not able to correct their

response. The subjects were instructed to recall the letters in order, if possible. After the
participants validated their answer with the space bar, a feedback screen indicated

whether the recallwas correct (i.e., itemmemory andordermemory both correct). Then a

screenwith a GOwindowwaited until the user moved on to the following list by pressing

the space bar again. The participants were then presented with the next list, which

followed a fixation cross lasting 2 s. The task began after a short warm-up including 18

progressive conditions. For the warm-up only, a rapid green light appeared on the screen

under the digit location whenever a digit was correctly captured. Similarly, a rapid red

light appeared whenever the space bar was pressed in error (false alarm). After the warm-
up, the experimenter checked whether both tasks (memory task and concurrent task)

were correctly performed during the warm-up before running the actual experiment.

Omissions, false alarms, and recall performance were scrutinized by the experimenter to

give the best advice to the participant for the following experiment (e.g., to be less

impulsive on the concurrent task or to bemore attentive to the concurrent/memory task).

6.2. Results
For this first simulation, we chose to analyse the data without taking the order or success

of the concurrent task into account; a letter item was considered correctly recalled

whenever it appeared in the response. For each participant and variant of TBRS2, a non-

linear minimization of�LL (where LL is the log-likelihood of the observed data) based on

Newton’s algorithm was performed. The constraints imposed on d and rwere that r > 0

and 2 < r/d < 11.6

To get a baseline, we computed the log-likelihood of a dummy model assigning equal

and constant probability of recall to every item. For instance, if a participant recalled 95%
of the 240memoranda, the dummymodel predicted a probability of recall equal to .95 for

6 This restriction implies that the estimated simple span lies between3 and11, a range encompassing the range of
simple spans usually reported.
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every item in every trial. Note that the dummymodel, although simplistic, gives an almost

perfect fit for a proportion of correct recall nearing 1.

The overall proportion of items correctly recalled across all trials and subjects is high

(94.2%). However, the proportion of trials in which all the memorandum is correctly
recalled decreases as a function of the number of items to be recalled, with 98.3%, 94.0%,

88.9%, 75.9% and 63.4% respectively for 2, 3, 4, 5, and 6 items to be recalled. These data

correspond to anoverall complex span (i.e., the numberof items that canbememorized in

a complex span task) estimate equal to 4.2, computed through the formula∑ ipi, where i

is the number of items to be recalled in a trial, and pi the proportion of correct responses in

such trials.

The maximum likelihood estimate of the parameters was computed for each

participant and variant of TBRS2. Table 1 displays the mean and standard deviation of
these estimates, as well as an overall estimate of the simple span for each variant. The

results concerning the log-likelihood are displayed in Table 2. Details on log-likelihood

computation are given in the Appendix.

TBRS2 clearly fits the data better than the dummy model in terms of LL (Table 2).

However, TBRS2 has four free parameters, whereas the dummy model has only one free

parameter. We thus used the Akaike information criterion (AIC) to compare the models.

The results are given in Figure 6, in which the area below the dotted horizontal line

corresponds to cases for which TBRS2 yields a poorer fit than the dummymodel in terms
of the AIC.

From the estimated parameters d and r, we could derive an estimate of the simple span

using Theorem 2. Because of constraints imposed on r/d, this estimated simple span was

bound to lie between 3 and 12. The mean estimated simple span was 7.09 (SD = 1.53),

with a median equal to 8. Figure 5 displays a violin plot of the participantwise estimated

1 + r/d.

6.3. Discussion

As illustrated in Figure 6, the TBRS2 variants gave a better fit (AIC) than a dummy model

whenever a participant correctly recalled <94% of the items. Keeping that in mind, the

data are clearly in favour of TBRS2, as compared with the dummy model.

Comparisons of non-embedded models based on the AIC are always subjective;

however, some authors have suggested that a difference of 4–7 (i.e., a difference of 2–3.5
in terms of LL for TBRS2) roughly corresponds to a 95% confidence interval (Burnham &

Table 1. Mean (SD) of the participantwise estimates of the parameters, sorted by variants of TBRS2

Variant d r Duration Baseline Simple span

SF 0.098 (0.072) 0.62 (0.48) 0.42 (0.17) 3.85 (3.44) 7

SL 0.099 (0.07) 0.63 (0.46) 0.41 (0.16) 3.77 (3.42) 7

SN 0.097 (0.071) 0.62 (0.47) 0.40 (0.16) 3.84 (3.43) 7

TF 0.088 (0.075) 0.53 (0.48) 0.35 (0.15) 3.84 (3.46) 7

TL 0.085 (0.095) 0.50 (0.62) 0.35 (0.17) 5.10 (11.35) 6

TN 0.053 (0.24) 0.31 (1.57) 0.34 (0.16) 5.49 (13.36) 6

Note. SF = steady first; SN = steady next; SL = steady lowest; TF = threshold first; TN = threshold

next; TL = threshold lowest. The last column displays an estimate of the simple span, defined as

b1þ r=dc.
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Anderson, 2002). Using this rule of thumb, we found no strong evidence in favour of any

variant of TBRS2 against another. Therewas nooverall best variant across the participants,

partly because several variants fitted different participants without apparent regularity.

We defer the task of comparing variants of the TBRS2 to future research, as it is not the

main goal of the current study.
Using Theorem 4, we derived participantwise estimates of the simple span and found

that, although we imposed only loose constraints on this simple span, the resulting

estimates are in line with previous research, suggesting a simple span of 5–9 (Mathy &

Feldman, 2012; Miller, 1956). In fact, only two participants did not fall within this range.

Table 2. Participants’ maximum log-likelihood table, sorted by increasing proportion of correct

recall (column 1). The second column indicates the (minimum) negative log-likelihood of the

dummy model. Columns 3–8 indicate the maximum log-likelihood difference between the dummy

model and variant of TBRS2. Positive values indicate that a variant of TBRS2 fits the data better than

the dummy model

Correct Dummy SF SN SL TF TN TL

.79 124.14 13.90 14.36 13.81 11.82 11.88 11.46

.80 118.70 11.50 11.35 13.82 12.53 12.43 16.57

.81 115.82 9.41 9.41 10.60 11.25 12.61 13.15

.82 117.65 2.12 2.11 2.21 0.04 2.11 3.26

.85 101.45 10.58 9.46 9.27 13.63 15.56 13.33

.88 90.42 15.03 14.14 13.94 13.61 14.60 11.95

.88 86.46 8.98 9.29 7.98 9.36 12.16 9.58

.91 71.21 8.87 9.14 8.74 8.40 8.57 7.75

.92 66.42 3.84 3.94 2.66 3.02 3.11 3.11

.93 61.39 7.70 7.33 6.16 5.86 6.52 3.97

.93 58.78 1.77 1.40 1.47 1.54 1.49 1.57

.94 56.11 2.14 2.18 1.71 2.21 3.24 2.88

.94 56.11 5.86 7.14 6.17 5.98 6.41 6.08

.94 56.24 0.46 0.47 0.67 0.38 0.38 1.20

.95 50.55 1.16 1.14 0.95 1.42 1.44 0.87

.95 50.55 3.65 3.48 2.22 3.30 3.72 2.92

.95 44.65 12.57 12.70 14.41 13.69 13.82 14.92

.96 41.57 4.79 3.83 2.59 5.28 5.18 3.26

.96 38.38 1.43 1.44 2.25 1.75 1.91 2.55

.96 38.38 0.78 0.68 0.77 1.48 1.19 0.15

.96 38.38 0.67 0.70 0.58 1.21 1.75 0.04

.97 31.64 4.54 4.61 4.27 4.78 4.37 5.43

.97 28.06 2.29 2.38 1.90 2.09 1.89 2.21

.98 24.30 1.52 1.22 0.99 0.93 1.36 0.00

.98 20.34 3.23 3.88 3.05 4.61 2.58 2.34

.98 20.34 0.37 0.40 0.60 0.31 0.40 0.84

.98 20.34 3.45 3.00 3.09 3.62 3.58 2.48

.99 16.13 0.69 0.70 0.57 0.36 0.37 0.42

.99 16.13 0.35 0.36 0.32 0.56 0.60 0.13

.99 11.57 0.67 0.68 0.78 0.51 0.51 0.74

.99 11.57 0.23 0.23 0.19 0.20 0.20 0.23

.99 11.57 0.39 0.48 0.38 0.20 0.35 0.36

Note. SF = steady first; SN = steady next; SL = steady lowest; TF = threshold first; TN = threshold

next; TL = threshold lowest.
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Figure 6. Maximum log-likelihood (LL) by participant, sorted by increasing proportion of correct

recall. The y-axis displays the maximum log-likelihood difference between TBRS2 and the dummy

model. Each segment runs from the minimum to the maximum value across the variants. Positive

values indicate that TBRS2 fits the data better than the dummymodel. The bottom area between the

solid and dotted lines corresponds to cases inwhich, although the LL is greater for TBRS2, the Akaike

information criterion is lower.
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This result shows that the TBRS can provide plausible estimates of the average span. This

illustrates one of the strengths of the mathematical transcript of TBRS proposed here: it

allows an estimate of the simple spanwith data fromwhich a direct measure of the simple

spanwas not actually done since a concurrent taskwas used to limit the span (because the
number of items to be remembered stays below the span). The participants could recall

(complex span) 4.2 items on average, andnever faced a trial inwhich theyhadmore than 6

items to recall. However, we could derive estimates of d and r and thus, the theoretical

simple span, from these data. This constitutes a method to rigorously test TBRS in the

future, and illustrates one of the advantages of using amathematical model. However, our

data are not sufficient to reliably compare the variants of TBRS2 or even to settle the

question of the relevance of TBRS2.

7. Conclusion

We constructed the first detailed mathematical transcription of TBRS assumptions that

adds no characteristic not already addressed by the original description (Barrouillet &

Camos, 2007), making as few decisions as possible and using as few parameters as

possible. In comparison to the only other computational implementation, TBRS*
(Oberauer & Lewandowsky, 2011), our TBRS2 model does not account for features such

as order encoding: although it does predict order effects on correct recall, it does not

describe how the order of the items is encoded. On the one hand, TBRS2 is thus less rich

than TBRS*. On the other hand, TBRS2 is simpler and more transparent. Thanks to this

transparency, we could prove several theorems mathematically following from the TBRS

assumptions. For instance, the decay and refreshment functions are tightly related under

the cognitive load assumption. Another striking theoretical result is that the simple span

can be computed from the decay and refreshment rates. It is thus possible to indirectly
estimate the simple span from data collected through complex span tasks using

systematically fewer items to be recalled than the participants could virtually recall if no

concurrent task was used. These results can now be used to test the TBRS theory at a

degree of precision probably never reached before. In an illustrative experiment, we

estimated the TBRS2 free parameters d and r and derived a simple span estimate (the

simple span here being defined as themaximumnumber of items one can hold inmemory

for as long as needed). We found plausible results in favour of TBRS2 and therefore in

favour of the TBRS theory.
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Appendix: Log-likelihood algorithm

The dummy model

For a given participant, the dummymodel assumes that each itemhas the sameprobability
p of being retrieved, p being the observed proportion of correct recall. Thus, the

probability of an observation (the likelihood) is given by the formula pc+(1�p)n�c, where

n is the total number of items to recall, and c the number of items correctly recalled. Thus,

the log-likelihood is given by

LL ¼ c logðpÞ þ ðn� cÞ logð1� pÞ:

TBRS2 variants

Let us assume that a variant of TBRS2 is chosen, as well as a value for each parameter. For a

given participant and task, each version of TBRS2 yields an estimate of the probability that

each item will be correctly recalled at the end of the trial. Let us call these theoretical

probabilities p1, p2, . . . , pn (n is the number of items to recall). At the end of the trial, we

have a set of observations, o1, . . . , on equal to 1 if the corresponding item is correctly
recalled, and 0 otherwise.

The likelihood of the corresponding observation, that is, the probability that, within

the TBRS2 model, such an observation arises, is given by the formula

Y
i

ðoipi þ ð1� oiÞð1� piÞÞ:

Note that in this formula, each oipi+(1�oi)(1�pi) is simply pi if item number i is correctly

recalled, and 1�pi otherwise.

Thus, the log-likelihood corresponding to this task and participant is given by

log
Y
i

ðoipi þ ð1� oiÞð1� piÞÞ
 !

¼
X
i

logðoipi þ ð1� oiÞð1� piÞÞ:

To compute the log-likelihood of a participant, we simply sum up the log-likelihoods

corresponding to all trials from the participants.

Using a non-linear minimization method (R-function nlm), we could determine the
maximum log-likelihood L̂ corresponding to a participant. From this value, we derive the

AIC using the formula

AIC ¼ �2L̂þ 8;

where eight is the value of 2k, since k = 4 (the number of parameters in the model).

The R-scripts used to compute the log-likelihood are freely available online at
https://github.com/ngauvrit/tbrs.
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