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This paper aims to evaluate the capacity of working memory while measuring the compressibil-
ity of information likely to allow the formation of chunks. It is hypothesized that the average
working memory capacity (4 ± 1 chunks) allows the span to vary depending on the sum of
information compressed within each chunk. We constructed a task of immediate serial report
in which the participants had to memorize and recall sequences of categorizable stimuli, that is,
objects with possible associations between them. The logical complexity of Feldman’s (2000)
rules of classification was used to measure the compressibility of each sequence of stimuli. To
favor the extraction of informational regularities by participants, a second manipulation of the
sequences concerned the presentation order. The results showed a span of about 4 objects, with
a variability which depended on both the complexity of the sequences and their presentation
order. The amount of information retained in working memory was maximal for the most
compressible sequences and for the presentation orders that facilitated the abstraction of rules.
The role of working memory in the formation of chunks is discussed.

It is accepted that individuals have a tendency to group
information in order to make it easier to retain by recod-
ing it in chunks (Anderson, Bothell, Lebiere, & Matessa,
1998; Cowan, Chen, & Rouder, 2004; Logan, 2004; Naveh-
Benjamin, Cowan, Kilb, & Chen, 2007; Perlman, Pothos,
Edwards, & Tzelgov, 2010; Perruchet & Pacteau, 1990; Tul-
ving & Patkau, 1962). The process of chunking allows the
simplification of a memorization task by taking advantage
of regularities in order to reduce the quantity of informa-
tion to retain (Ericsson, Chase, & Faloon, 1980; Miller,
1956). This process can for instance function via temporal
segmentation (1.9.8.4 � 19 − 84), reorganization (4.8.9.1 �
reverse(1984)), or pointing to preexisting knowledge in the
long-term memory (1.9.8.4 � Orwell’s novel). As a key
learning mechanism, chunking has had considerable impact
on the study of expertise (Chase & Simon, 1973; Charness,
1979; Ericsson & Kintsch, 1995; Egan & Schwartz, 1979;
Hu & Ericsson, 2012; Gobet et al., 2001; McKeithen, Reit-
man, Rueter, & Hirtle, 1981) and animal learning (Terrace,
1987, 2001). Much progress has also been made in the
comprehension of temporal grouping on immediate recall
(Farrell, 2008, 2012; Maybery, Parmentier, & Jones, 2002;
Ng & Maybery, 2002). Grouping, instead of chunking, is
a more neutral term that tends to indicate that no reference
to long term memory is made. Simply, people tend to parse
the to-be-recalled lists into clusters of temporally proximate
information ‘on the fly’, which produces better recall of the
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clustered sequences that are mentally organized into mini-
lists (which may be reflected by miniature serial position
curves).

Little is known about the role of working memory in the
creation of chunks, that is, the possibility that groups re-
flecting regular sets within a sequence can be used as ger-
minal chunks ‘on the fly’. Repeated exposure to the groups
only favor the encoding of more permanent chunks in long
term memory, but chunk creation is a mechanism that can
be clearly separated from chunk retrieval (Guida, Gobet,
Tardieu, & Nicolas, 2012). Whatever the origin of the recod-
ing process (long term for chunks or short term for groups),
the presence of regularity in the to-be-recalled material can
account for apparent disparate capacities (this is the case
for instance in visual working memory; Brady, Konkle, &
Alvarez, 2009, 2011; Brady & Tenenbaum, 2013). One
reason is that chunking (or grouping) has been controlled
over the past 50 years in working memory tasks because it
runs counter to a rigorous estimation of the mnemonic span
(Cowan, 2001). The most basic way to control chunking con-
sists of limiting the time of presentation and recall. Luck
and Vogel (1997), for example, proposed a rapid task using
image stimuli such as oriented lines or shapes of different
colors. Their conclusion was that the amount of information
that one can memorize in visual short-term memory does not
depend on the number of features but is limited by four ob-
jects. Other works support the hypothesis that capacity is
limited by the number of features (Magnussen, Greenlee, &
Thomas, 1996; Olson & Jiang, 2002; Wheeler & Treisman,
2002; Xu, 2002). The present study focuses on determining
what rules apply to grouping and how this relates to capacity.

Using a chunking memory span paradigm, Mathy and
Feldman (2012) showed that capacity in working memory
can be evaluated both in terms of chunks (each of the 4±1
chunks, Cowan, 2001, being fundamental units associated
with slots in working memory, W. Zhang & Luck, 2008)
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and in terms of the number of items that can be unpacked
from the chunks (which can agree with Miller’s estimation
of 7±2 items in some circumstances, but not always), but
that the real capacity is actually 4 (a result that concurs with
certain theoretical analyses, Dirlam, 1972; Macgregor, 1988;
Simon, 1974, and with other empirical studies, Broadbent,
1975; Gobet & Clarkson, 2004; Halford, Baker, McCredden,
& Bain, 2005; Halford, Wilson, & Phillips, 1998; Luck &
Vogel, 1997; Pylyshyn & Storm, 1988; Wickelgren, 1967;
W. Zhang & Luck, 2008). The study by Mathy and Feldman
(2012) encourages to see short-term memory and working
memory as equivalent theoretical constructs, which is usually
not the case (Aben, Stapert, & Blokland, 2012). Cowan’s
number refers to the number of chunks that can be stored
after compression. Miller’s number refers to the number of
items before compression.

In the chunking memory span tasks developed by Mathy
and Feldman (2012), chunking did not depend on the uncon-
trolled individual’s perception of groups, but was rather in-
duced by the regularity in the material. In this paradigm, the
goal is to deliberately prompt the grouping of memory items,
by allowing possible associations between items to form re-
lated units (for instance the list BBFFBBB could be retained
as three chunks instead of seven independent letters). The
idea is to introduce sequential patterns of variable length
(e.g., 54321.246) to measure whether more regular sets can
be represented more compactly by taking advantage of their
regularity (see also, Mathy & Varré, 2013, Exp. 4, in which
this paradigm is used to examine storage and processing to-
gether in association, with both processes dedicated to the
to-be-recalled items). The present study also focuses on how
capacity limitations can be overcome whenever a form of re-
lational information can be computed in a sequence of items.
However, instead of digits, the present study uses sequences
of categorizable multi-dimensional artificial stimuli, with se-
quences offering possible associations between the stimuli.
Following Mathy and Feldman (2012), the idea is that two
non-independent items can be encoded in a more compact
way into a single slot in memory, resulting in a greater num-
ber of available slots for the encoding of other items. The
main characteristic of this paradigm is that the chunking pro-
cess is quantified since regularities are known in advance.

The theory developed in this paper is that chunking pro-
cesses are assessable by the compressibility of information
(Mathy & Feldman, 2012). Three points must be clarified
from the start about the notion of compression: 1) we aim
to explain the formation of chunks on the fly (and not their
use in relation to prior knowledge in long-term memory), 2)
we describe a process of compression without loss of infor-
mation (the exact original data can be reconstructed from the
compressed data), and 3) we only attempt to quantify a pro-
cess of logical compression. However, despite our use of a
precise metric to describe how logical rules can be encoded,

we do not lose sight of the fact that some verbal processes
usually critical to short-term memorization (Baddeley, 1986;
Burgess & Hitch, 1999; Baddeley, Thomson, & Buchanan,
1975; Chen & Cowan, 2005; Estes, 1973; Page & Norris,
1998; G. Zhang & Simon, 1985) are unfortunately left un-
controlled in our study. Still, we intentionally let the par-
ticipants verbally recode our visual-based material because
we thought that implementation of articulatory suppression
could affect attention and subsequent encoding of the logical
rules. It was our goal to let the participants encode the objects
freely.

In the present study, two main factors are used to manipu-
late the complexity of the sequences. The first concerns their
compressibility and the second the ordering of objects within
sequences.

Based on the work of Feldman (2000) which provided a
measure of conceptual complexity, we selected different cat-
egories of objects to be displayed and recalled serially. For
instance: large white square, large black square, small white
square, small black square, small white triangle, and small
black triangle, which represents the category ‘large squares
or small objects’. We know the complexity of each of the
category structures we used since Feldman developed a for-
malism of their underlying logical rule, which accurately pre-
dicts subjective complexity (i.e., the difficulty to learn the
categories). Feldman showed that the subjective difficulty of
a categorization task depends on the length of the shortest
rule that describes the category, that is, the degree to which
the category can be faithfully compressed. For example,
using the same three binary dimensions (Size, Color, and
Shape), the sequence of objects ‘small black square, small
black triangle, small white square, small white triangle’ can
be simplified by abstracting the feature common to the four
objects: “small”. If these four objects are positive exam-
ples of a category to be discovered, the rule “IF small THEN
positive” allows one to separate these objects from negative
objects (large white triangle, large black triangle, large white
square and large black square). Hence, the information for
this category is very compressible and does not require much
mental effort to be retained. This means that learning the
complete category of positive objects by rote is unnecessary
since a simpler rule/definition (“small”) allows one to en-
code the category. Conversely, less compressibility makes
information difficult to summarize, so that incompressible
categories do not allow any learning strategy based on an
abstraction process to occur.

The second factor was order. Certain sequential presenta-
tions of the objects may hinder the abstraction of the category
structure, when the objects do not seem to connect easily to
form a given rule. As a result, the recall of the sequence
seems more difficult. Effectively, although the compressibil-
ity metric provided by Feldman (2000) does not vary with the
permutation of the stimuli of a given category, our hypothe-
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Figure 1. Example of construction of three sequences from the category structure “square or small”, representing six objects (top left
cube). The category objects are replaced by black numbered circles on each of the three cubes under the (a), (b), (c) options, to simulate
their sequencing. In each of the three cubes, one sequence (or presentation order) is indicated by the numbers from one to six as well
as by the arrows. The distance between two successive objects is described by arrow type: continuous (an edge), broken (2 edges) and
dotted (three edges). In the Rule condition, the objects are presented in three clusters within which the full arrows are parallel and in the
same direction. This regularity is related to two factors: the separation of the clusters by discontinued arrows (2 edges) and the similarity
between the objects of the same cluster, which both facilitate the formation of chunks. In the Similarity condition, the inter-stimuli distance
is minimal. All the objects are linked between them by continuous arrows. In the Dissimilarity condition, the sequence is characterized by
a maximal inter-stimuli distance. The graphs show the distances separating the stimuli as a function of presentation time (1 second in the
condition). These graphs show the intermediary aspect of the mean inter-stimulus distance in the Rule condition. In the Rule condition,
distance leaps can facilitate the identification of clusters. The intervals are more numerous and less regular in the Dissimilarity condition.
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sis is that individuals only benefit from compressibility when
the presentation order follows the process of simplifying the
information that they attempt to make use of. The second
idea was therefore to order the stimuli of a given category
according to three possible options: rule-based, similarity-
based (i.e., step by step), and dissimilarity-based (i.e., dis-
organized). Mathy and Feldman (2009) showed that learn-
ing categories was more effective when information was pre-
sented in a rule-based fashion, in comparison to a less ef-
fective order maximizing inter-item similarity (Elio & An-
derson, 1981, 1984; Gagné, 1950; Medin & Bettger, 1994),
and worse in a dissimilarity-based fashion. In making the
hypothesis that participants use logical rules in order to re-
duce information, we predict that an order facilitating the
formation of a logical rule will favor the chunking of ob-
jects and consequently their recall. The main difference be-
tween research on categorization and the present study is
that instead of being required to recall an unordered set of
objects belonging to one of two contrasting categories, our
participants were required to memorize a sequence of ob-
jects of a given category. According to our hypothesis, it
is easier to unpack the stimuli from a well-structured rule.
For instance, “square[small:...[black:...]]” may be a com-
pressed hierarchical description for retaining the set “small
black square, small white square, large black square, large
white square” (the : symbol for instance indicates that there
are other values to be listed after the one that precedes it).
The “small:...[black:...]” part simply means that the square
objects have to be listed beginning with all the small ones
(then the non-small ones), and beginning with the black one
for every size (then the non-black one). The only way to
recover the original information is to follow the correct algo-
rithm to unpack the sequence. Ideally, this works for individ-
uals: for instance, if one plans on cleaning two bedrooms, be-
ginning by straightening up then vacuuming, starting by the
smaller room (bedroom #1). Then, the following order can
be executed: straightening up bedroom #1, straightening up
bedroom #2, vacuuming bedroom #1, vacuuming bedroom
#2 (by analogy: “clean[straighten up:...[bedroom #1:...]]” ).
The present study tends to show that participants are able to
encode and decode information hierarchically according to
this expectation in short-term time.

In sum, we expect that recall will be more effective for
compressible sequences (Feldman, 2000) and particularly in
the rule-based presentation order condition (Mathy & Feld-
man, 2009), while agreeing with the prediction of a mean
recall that fits the 4 ± 1 capacity (Cowan, 2001, 2010). Our
results will show that it is conceivable to measure short-term
memory capacity and chunking simultaneously.

Experiment 1
The computerized experiment included 51 sequences with

one to eight stimuli presented serially. Each sequence was

followed by a recall phase in which the stimuli had to
be recalled serially. The stimuli were categorizable multi-
dimensional objects with discrete features (e.g., large black
triangles, etc.). These stimuli were of particular interest as
their categorization has been investigated quite thoroughly
for more than half a century (Bruner, Goodnow, & Austin,
1956; Shepard, Hovland, & Jenkins, 1961). For instance,
there is consensus that the predicted complexity of different
categories for 3-dimensional objects globally fits the diffi-
culty the participants have in learning the categories. This
domain therefore provides a precise compressibility metric,
as opposed to lists of words for instance. The two main fac-
tors in the present experiment were the complexity structure
of the 3-dimensional categories and the presentation order
within categories. Another basic factor was the number of
objects per category.

Participants. Sixty-seven students enrolled at the Univer-
sity of Besançon, M = 22 years old (sd = 2.7), volunteered
to participate in this experiment.

Stimuli. Our stimuli could vary according to three dimen-
sions: shape, size and color. There were only two possible
sizes (280 × 280 pixels or 140 × 140 pixels). For a given se-
quence, the program randomly chose two out of eight shapes
and two out of eight colors (cf. Fig. 2.a), in order to create
a set of eight objects. For example, if the values triangles,
squares, white and black were drawn, the program generated
2 × 2 × 2 = 8 stimuli by combining three features for each
stimulus (small white triangle, large white triangle, . . . , large
black square). These dimension values made it possible to
generate 1568 possible sets of eight objects, so that the prob-
ability of a participant meeting two identical sets during the
entire experiment would be very low. The stimuli were pre-
sented on a gray background.

Categories. Truncated categories from 1 to 8 stimuli were
drawn from the initial set of 8 stimuli. The categories were
then organized and transformed into sequences according to
a procedure explained below. In short, there was a three-
fold distinction for each sequence: a set of stimuli (i.e., the
original set made of eight stimuli), a category (a subset of
the original set of eight stimuli) and a sequence (a subset in
which the stimuli were ordered).

Any set of eight 3-D stimuli can be represented schemat-
ically on a cube called a Hasse diagram (cf. Fig. 1), whose
three dimensions (height, length and depth) can be associ-
ated with those of our objects (size, color and shape). If
two objects are situated on two adjacent vertices, then they
only differ by a single dimension. For example, a large black
square and a large black triangle only differ by their shape.
The shortest distance between two objects (by following the
edges) is equivalent to the number of differences which sep-
arate them. A large black triangle and a small white square,



SPAN 5

Figure 2. (a) A sample of the 8 types of shapes, 8 types of colors
and 2 types of sizes on which the stimuli were constructed. (b) An
example of a sequence of 4 stimuli, followed by a screen displaying
a fixation cross. (c) Screen of 8 randomly placed stimuli including
the 4 stimuli presented during the preceding to-be-remembered se-
quence; the stimuli are underlined using a white bar when the user
clicks on them; when the user validates his answer with the space
bar, a feedback screen informs the participant if the recall is correct
(here: Perfect ! In green); a last screen with a GO window waits
until the user moves on to the next sequence by pressing on the
space bar.

for example, differ by their shape, size and color, and they
are physically separated by three edges on the diagram. In
the Hasse diagram, the positive examples are represented by
the vertices marked by a black circle and the negative ones
are represented by the empty vertices. The Hasse diagram
is therefore very useful to represent the sparsity of objects
within categories. This sparsity directly impacts the category
complexity.

The to-be-recalled categories of stimuli were chosen on
the basis of the exhaustive list of the 21 categories shown in
Figure 3. Figure 3 also gives Feldman’s (2000) measure of
compressibility (FC) for each category, which was used as a
measure of complexity. FC is indicated in the middle column
because the FC numbers for a given line fit both the category
structures on the left and those on the right. Note that FC is
not confounded with sequence length for sequences equal to
2, 3, 4, 5 and 6 objects. However, for the categories made of
1, 7 or 8 objects, no variations of complexity could be ma-
nipulated. When a set was composed of eight objects, cat-
egorization was no longer involved. In this particular case,
the shortest formula was trivial (i.e., “all objects”) and it was
associated with a not applicable (N/A) FC value. Still, re-
taining a sequence of 8 objects in our experiment required
encoding their position: the complete set was presented at
test when we asked participants to reconstruct the order of
presentation.

Ordering of the categories in sequences. Again, a catego-
rization task is akin to a free recall task: the participants are
usually required to freely recall the objects of one category.
In the serial recall task used in the present study, recalling
several items in the correct order was more complicated than
making a category. The measure of complexity only serves
here to predict the chunkability of the category, not the mem-
ory of the sequence.

A second manipulation of the experiment consisted of se-
quencing the objects according to three conditions: Rule,
Similarity and Dissimilarity. Before presenting these types
of orders in greater detail, it is important to recall the interest
of this manipulation. The compressibility of information is
theoretically independent from the presentation order. How-
ever, controlled presentation orders were used (as opposed to
using a random order) in order to manipulate the learnability
of the categories, in other words, the participants’ ability to
make groupings of information, which is necessary for sim-
plifying the information. According to the hypothesis, cer-
tain types of order favor the formulation of a rule describ-
ing the objects presented, and, as a consequence, their re-
call. The 21 categories of objects were transformed into 51
sequences according to these three presentation orders. The
number 51 results from the fact that the order of some cate-
gories (six categories in all) was not manipulable. This was
the case, for example, with categories made up of one or two
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Figure 3. Column FC indicates Feldman’s (2000) measure of logical compressibility for each of the categories in the left or right column.
This measure only indicates the number of literals in the shortest logical formula allowing one to describe the positive examples of a category
indicated by a black circle. The black circles positioned on the cube illustrate the relationship between the objects that could be used by
the participants to associate the stimuli in our experiment. Each of the stimuli selected for a category were presented sequentially and their
location remained constant in the middle of the screen, so no reference was made during the experiment to the spatial organization shown
in this figure (this was done to show the similarity structure between objects more easily). For instance, the 8th cell on the left indicates
that four triangles were used to construct the memory list (cf. the bottom right cube above ‘Reference’ for retrieving which of the stimuli
the black circles in the 8th cell on the left point at). The “triangle” category representation would be sufficient for a free recall of the list.
However, the observers were asked to reconstruct the sequence, which required a more precise encoding of the list.
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objects (once the first object is drawn, only the second ob-
ject remains), and also of categories for which the distances
are identical between any pair of objects (this is the case for
the category in the left column of Fig. 3 for which FC = 8
and FC = 10). These six categories were directly converted
into “order condition = None” coded sequences. The Rule,
Similarity and Dissimilarity conditions were applied to the
15 remaining categories. Therefore, each of the participants
were only administered 51 sequences (6 + 3 × 15).

The three presentation orders that were based on a study
by Mathy and Feldman (2009) are detailed below. For all
presentation orders, note that the similarity between two ob-
jects can be evaluated by the number of edges which sepa-
rates them on a Hasse diagram (i.e., a city-block distance).

In the Rule condition (Fig. 1), the objects were grouped
by clusters (i.e., by sub-categories). The similarity between
objects within clusters was maximal while it was minimal
from one cluster to another. It was hypothesized that a min-
imal similarity between clusters contributes to greater dis-
crimination of the clusters into distinguishable units, thus
allowing the formulation of a rule. Figure 1 shows the ex-
ample of an organized sequence in the Rule condition. The
shortest rule for describing the set of objects to be freely re-
called (i.e., not serially) is “square or small”. In the Rule
condition, the objects in this sequence were presented in an
order which organized them successively into pairs corre-
sponding to sub-clusters. Each pair presented two objects
which differed only by their color, first the white object, then
the black one. The squares were presented first (the pair of
large squares, then the pair of small squares, each pair rep-
resenting a sub-cluster of the cluster “square”), followed by
the small triangles (a sub-cluster of the cluster “triangle”).
Therefore, the differences were minimal within sub-clusters
(a single difference in color), but more marked between sub-
clusters. For example, a small black square followed by a
small white triangle (two feature differences) marks a sepa-
ration between two clusters. The distance between the large
black square object and the small white square was also made
of two features in this example. In the Rule condition, dis-
tance leaps (cf. Fig. 1, bottom) can facilitate the identifica-
tion of clusters and consecutively it might induce the forma-
tion of chunks. The Rule condition urged the participants
to reorganize the “square or small” rule into a more hierar-
chical rule made up of a “white, black” iteration embedded
in a “large squares, small squares, small triangles” iteration.
By looping all the elements of both arrays (totalizing 8 fea-
tures), the participant could recover the ordered category of
the original six objects comprising 18 features. With a bit
of practice, the rememberer could further increase the reduc-
tion of information by adopting a more personal formulation
such as “(white,black) × [large squares + small (squares +
triangles)]” that reduced the number of features to seven. We
do not assume that the participants are using this exact type

of encoding, but rather we indicate that any regularity could
be encoded by the participants. Another less compressible
material made of six other objects, e.g., (black or small) tri-
angles or (large or white squares)” ordered in a nonregular
way (“large black square, small white triangle, small black
triangle, large white square, large black triangle, and small
white square”) was definitely non-chunkable. We hypothe-
sized that the Rule condition presents successive objects in
organized, distinguishable and thus chunkable clusters. In
this condition, according to our expectations, the participants
should have the best recall performance, particularly if they
attempt to formulate a rule for memorizing the objects1.

In the Similarity condition, the first object of the se-
quence was chosen to favor a minimal inter-stimuli total dis-
tance, each object that followed presented a maximal similar-
ity with the preceding one, so that the global distance uniting
all the stimuli was the shortest possible. The objects were
then presented in a chain following the principle that there
was maximal similarity between two successively presented
objects. Following Mathy and Feldman (2009), although the
mnemonic traces of the objects within sequences may be im-
plicitly reinforced by their temporal contiguity in the Simi-
larity condition, resulting in the memorization of exemplars
(Medin & Schaffer, 1978; Nosofsky, 1986), it is hypothe-
sized that the participants should show poorer results than
in the Rule condition, particularly because the participants
are inclined to form explicit verbal rules rather than trying to
retain exemplars in such categorization tasks (Ashby & Ell,
2001). Figure 1 shows an example of Similarity order for
the same category of objects. In this example, the objects
are presented successively with a single feature difference
between each stimulus. Note that because there are several
ways (24) in which the stimuli can be ordered by maximizing
the similarity between the four stimuli in the cube, there is no
way of retaining a way to encode a path for the eight chained
stimuli.

Finally, in the Dissimilarity condition, the first object
was chosen so as to favor a maximal inter-stimuli total dis-

1 This rule-based presentation order is a bit different from the one
used by Mathy and Feldman (2009). Because the study by Mathy
and Feldman (2009) focused on categorization processes, the order-
ing of the objects within clusters was not ordered in such a logical
fashion, but randomly. Mathy and Feldman (2009) hypothesized
that the randomization of that which is not informative to form a
category (steps within a cluster) yields superior learning. For in-
stance, in an induction task, if a red bird is followed by a red car,
the abstraction “red things” might form more readily than a if a red
bird is followed by a red fish which tends to orient the learner toward
a more specific concept such as “red animals”. Because the present
tasks required the retention of the correct order of the clusters and
the correct order of objects within clusters, our choice consisted in
segregating the clusters while ordering logically the objects within
clusters to urge participants to form a hierachical rule.
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tance. Each object that followed presented a minimal sim-
ilarity with the preceding one, so that the global distance
between stimuli was maximal. This principle of presenta-
tion can be considered as voluntarily disorganizing the pre-
sentation so that the associations between stimuli are more
difficult. This condition should perturb the memorization of
objects. Consequently, performance in terms of recall should
be lower than in the other two conditions. Figure 1 shows
an ordered sequence in the dissimilarity condition using the
same example as above.

Note that the manipulation of the presentation orders was
less effective (if possible) for the sequences presenting the
highest FC simply because the higher heterogeneity of the
categories hindered their manipulation. For instance, the
white (small triangle or large square) or large black triangle
concept (7th cell in the left column of Figure 3) was typical
of a concept for which different presentation orders could
not be specified. Figure 4 illustrates this nonindependence
between compressibility and order. The most incompress-
ible categories (top of the triangle) provides fewer possibil-
ities of order manipulation. The reason is that once a first
object is chosen, there is no other choice than picking a sec-
ond object that is two-feature away from the first one, and
so on. The top category in Figure 4 indicates therefore a
R = S = D configuration that illustrates the idea that rule-
based, similarity-based and dissimilarity-based orders lead
to the same unique possible ordering type. The second row
in Figure 4 states that a dissimilarity-based order is quali-
tatively different from the two other orders (rule-based and
similarity-based). The rule-based order is almost identical to
the similarity-based order, as only one permutation makes
a difference: the rule-based order is “front-top-left, front-
bottom-left, front-top-right, and back-top-left”, whereas the
similarity-based order is “front-bottom-left, front-top-left,
front-top-right, and back-top-left”. The only difference is
therefore ‘front-bottom-left, front-top-left’ vs ‘front-top-left,
front-bottom-left’ for the first two objects, making both pre-
sentation orders almost identical (which we represented us-
ing a R ' S notation). The last row, where FC = 1, allows
more diverse manipulation of orders, resulting in a clear de-
marcation between the three types of orders.

Procedure. Serial report was investigated using a proce-
dure similar to the visual STM serial report task (Avons &
Mason, 1999; Smyth, Hay, Hitch, & Horton, 2005). The
computerized session included 51 sequences with one to
eight stimuli presented serially at intervals of one second (26
participants) or two seconds (41 participants) per stimulus
depending on the condition2. Before beginning, the partic-
ipants were asked to read a description of the experiment
which informed them that sequences of images would ap-
pear on the screen, that they had to memorize the images in
the correct order, and that each phase of presentation would

be immediately followed by a recall phase.
In the phase in which the sequence was presented, the

stimuli were displayed in the center of the screen (cf.
Fig. 2.b) for one or two seconds. Then a fixation cross ap-
peared on the screen for one second. This phase was fol-
lowed by a recall phase (cf. Fig. 2.c) during which the orig-
inal set of eight stimuli was randomly placed on the screen.
The stimuli were underlined when the user clicked on them.
After the user validated his answer with the space bar, a
feedback screen indicated if the recall was correct (i.e., item
memory + order memory both correct), then a screen with a
GO window appeared and the user moved on to the follow-
ing sequence by pressing on the space bar. The order and the
response times were recorded automatically by the program.

The 51 sequences were presented in random order to avoid
any ascending presentation of the length or the complexity of
the items. Moreover, concerning the distribution of the items
on the Hasse diagram, we established six possible rotations
for each category structure that corresponded to six possible
ways to place the objects on the diagram while preserving
the same structure. A rotation was randomly drawn for each
of the sequences presented in order to multiply the possible
combinations in dimensional terms (shapes, sizes and col-
ors). Thus, whatever the sequence, the participant did not
know in advance which of the dimensions would be the most
pertinent for recall. The experiment lasted on average 25
minutes. In all, 3417 sequences/trials (51 × 67 participants)
were presented.

Results

The following analyses were conducted on serial recall
scores coded correct (1) or incorrect (0) for each trial (a re-
sponse was scored correct when both the items and the posi-
tions were correctly recalled), proportion correct (when the
recall scores were averaged across conditions) and response
times (the entire amount of time needed to recall a sequence).
In the following Results section, we sometimes kept all the
trials in the analyzes in order to determine the whole data
variance, to get more power, or when our goal was to re-
fine the basic ANOVA that were run on aggregated data.
When we used within-subjects or beween-subjects ANOVA,
we first aggregated the data for a given variable of interest,
for instance ‘presentation time’, to run separate univariate
ANOVA for each dependent variable of interest (e.g., the
mean percent across trials, or the mean RT).

2 The one-second condition tends to be standard to measure the
memory span, so we used this condition with a great number of
participants. However, we still wanted to modulate the time allot-
ted to chunking by extending the presentation rate (i.e., 2 s) with a
smaller group of participants, because presentation rate can affect
memorization strategies (Hockey, 1973)
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Figure 4. Manipulation of presentation orders is facilitated by more compressible categories. The ∼ = notation intends to represent the '
notation.

Summary of the expected results: 1) Recall performance
primarily depends on sequence length, because little infor-
mation about order can be compressed, 2) A higher com-
pressibility of information (i.e., lower FC within sequences
of the same length) allows better recall because lower FC
allows better recoding of the entire set of items, 3) More
regular presentation orders (i.e., rule-based, followed by
similarity-based and dissimilarity-based) favor the compres-
sion of the available regularities and simplify the encoding
of item position.

Proportion correct. Analysis on proportion correct (based
on the trial-by-trial 0/1 scores averaged across trials) was
significant (t(65) = −2.5, p = .014), with respective means
equal to .33 (sd = .11) and .27 (sd = .08) for the 2s and 1s
conditions, with a size effect inferior to 10%, η2 = .09.

Figure 5 shows the mean proportion of correct responses
as a function of the length of the sequence presented, sepa-
rated by the type of presentation order. Overall, a nonlinear
regression (using an s-shape sigmoid function of the form
a − 1/(1 + exp(−b × x + c)) on the mean points of this fig-
ure (along the x axis) showed that 78% of the variance of

performance was explained by Length (R2 = .78). Indepen-
dent of the orders, the estimation of the mnemonic span at a
threshold of 50% of correct responses was 3.5 objects, which
corresponds to the limit of 4± 1 chunks estimated by Cowan
(2001) and to a previous estimation of the digit span resulting
from a similar chunking memory span paradigm (Mathy &
Feldman, 2012). When the length of the sequence increased
from three to four objects, the mean performance dropped
from .64 to .33. It also diminished by half again with be-
tween four and five items to recall (from .33 to .14). Thus,
the mean performance was divided by 4 (from .64 to .14)
when the length increased from three to five. This impres-
sive drop of performance at list length = 4 recalls Cowan’s
(2001) estimation of capacity.

A multiple linear regression analysis on mean proportion
correct showed that each of the three factors contributed sig-
nificantly to the drop in performance. The respective per-
centages of variance explained were: length of the sequence
(βirYi = 70%), compressibility/FC (βirYi = 9%, which
included eight unique values, that is 1, 2, 3, 4, 5, 6, 8,
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10), and presentation order3 (βirYi = 11%), totalizing 90%,
F(5, 44) = 72, p < .001,R2 = .90. The effects of length
and presentation order on performance are clearly visible in
Figure 5, whereas the effect of compressibility is shown in
Figure 6. Regarding the effect of FC, a partial correlation
analysis showed that at a constant sequence length, com-
pressibility and correct proportion were negatively linked
(r = −.28, p < .001). Effectively, the more the complexity
of the sequence increased, the more the performance dimin-
ished (see Fig.6).

The ANOVA for repeated measures with FC as within-
subject factor and proportion correct as dependent variable
was significant for most sequence lengths: F(2, 132) =
2.9, p = .054, η2 = .04, for two-object sequences;
F(2, 132) = 11.5, p < .001, η2 = .15, for three-object
sequences;F(3, 198) = 45.6, p < .001, η2 = .41, for four-
object sequences;F(2, 132) = 18.8, p < .001, η2 = .22, for
five-object sequences; F(2, 132) = 45.1, p < .001, η2 = .41,
for six-object sequences. The mean data points for the latter
analysis are reported in Figure 6. Fig. 6 (bottom right) shows
the linear trend that we obtained using aggregated data across
participants, complexity and list lengths, totalizing 1273 data
points, (F(2, 1270) = 893, p < .001, R2 = .58; βFC = −.33;
βLength = −.76), both betas being significant.

The proportion correct for the Rule, Similarity, and Dis-
similarity orders was respectively .35 (sd = .16), .25 (sd =
.13), .16 (sd = .09). The ANOVA for repeated measures was
significant, F(2, 132) = 80, p < .001, η2

p = .55. We also ob-
served significant differences between the Rule and Similar-
ity conditions, t(66) = 6.8, p < .001, and between the Sim-
ilarity and Dissimilarity conditions, t(66) = 7.8, p < .001,
which were still significant after considering the Bonferroni
correction.

At lengths 3 and 4 (the conditions for which the four types
of order applied), the reason for the lower score for the None
order is linked to the complexity of the heterogenous cate-
gories for which FC = 8 and FC = 10. In these conditions, the
proportion correct for the Rule, Similarity, Dissimilarity, and
None orders was respectively .52 (sd = .03), .47 (sd = .03),
.32 (sd = .02), and .28 (sd = .04). The ANOVA for repeated
measures was significant, F(3, 198) = 25, p < .001, η2

p =
.28. We also observed significant differences between the
Rule and Similarity conditions, t(66) = 2.11, p = .04, be-
tween the Similarity and Dissimilarity conditions, t(66) =
6.7, p < .001, but the difference between the Dissimilarity
and None conditions was not significant. At lengths 3 and 4,
the only pair left significant after the Bonferroni correction
was Similarity-Dissimilarity.

Response times. The mean response time for a whole
sequence was 9.79 s. Overall, response times were higher
in the 2s condition, (t(65) = −2.4, p = .020), with re-
spective means for the 2s and 1s conditions equal to 10373

(sd = 2584) and 8864 (sd = 1985), with a size effect inferior
to 10% (η2 = .09).

The mean response times as a function of the Rule, Sim-
ilarity and Dissimilarity orders were respectively: 9797 ms
(sd = 2561), 9979 ms (sd = 2611), and 11439 ms (sd = 3453).
The ANOVA for repeated measures applied to this data was
significant, F(2, 132) = 27, p < .001, η2

p = .29. Paired tests
between the order conditions showed nonsignificant differ-
ence in response times between the Rule and Similarity con-
ditions, but a significant difference between the Similarity
and Dissimilarity conditions, t(66) = −5.5, p < .001.

Likewise, Feldman’s complexity significantly influenced
the response times, F(8, 528) = 25, p < .001, η2

p = .28 (the
ANOVA was based on all the FC values including the N/A
one). When the complexity increased, it took the participants
longer to recall the items. When presentation order and FC
were both taken into account in the ANOVA, we also found a
significant interaction, F(14, 1056) = 7.7, p < .001, η2

p = .09
that tended to show that the Rule-order benefited the partici-
pants more when FC was low. For instance, proportion cor-
rect was .49 higher for Rule-based presentation orders when
FC = 2 (in comparison to the average of the similarity- and
dissimilarity-based orders), whereas it was only .008 higher
when FC = 8. The differences in proportion correct were .23,
.29, .49, .14, .19, .05, .08, and .008 for the respective FC
values: N/A (when 8 objects had to be recalled), 1, 2, 3, 4, 5,
6, and 8.

Position curves. Serial position curves are often scruti-
nized to explore serial recall, especially when grouping is in-
volved (Anderson & Matessa, 1997; Frankish, 1985; Hitch,
Burgess, Towse, & Culpin, 1996; Henson, Norris, Page, &
Baddeley, 1996; Ng & Maybery, 2002; Maybery et al., 2002;
Ryan, 1969). Hence, we now provide an analysis of serial-
position curves, based on the idea that a chunking process
can result in unusual serial-position curves. We did not ex-
pect large distorsion of the usual position curves such as mul-
tiple bowing with primacy/recency effects within each group
that are sometimes observed when a temporal grouping is im-
posed on the items (for instance, mini serial position curves
can be observed within groups of three items). One reason
is that our use of Boolean dimensions tends to induce the
grouping of objects by pairs or quadruplets only. A simple
analysis can therefore search for runs of two or four items in
order to count the chunks that have correctly been formed.
To keep this analysis as simple as possible, we first focused
on two-object groups to assess the strength of associations
between two contiguous objects (Cowan et al., 2004; Chen
& Cowan, 2005). We assessed the effect of the manipulation

3 Because the use of dummy variables is more appropriate to rep-
resent multiple groups (Cohen & Cohen, 1983), the Rule, Similar-
ity, Dissimilarity and None conditions were respectively recoded
using three dummy variables.
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Figure 5. Proportion of correct sequences recalled as a function of the length of a sequence. The error bars show ±1 standard error.

of presentation order on list recall using strict serial-position
scoring (i.e., an object was counted as correctly recalled only
if in the correct position). For list lengths equal to 4, there
were two potential two-object chunks (at positions 1-2 and 3-
4); for list lengths equal to 6, there were three potential two-
object chunks (1-2, 3-4, and 5-6); for odd list lengths, the last
item was left out from the statistical analysis (although we
kept the descriptive statistics in the plots). We tested whether
there was a greater chance for participants to correctly recall
in order the adjacent objects within these pairs. Our predic-
tion was that the incentive to form chunks was a monotonic
function of the dissimilarity-, similarity- and rule-based or-
ders.

Figure 7 shows the serial-position curves (mean propor-
tion correct) as a function of list length and presentation or-
der. The blue, red and green colors stand for Rule-based,
Similarity-based, and Dissimilarity-based respectively, to
follow Fig. 5. The plots are supposed to be more stair-
like (by pairs of positions) in the rule-based order condi-
tion. To verify this prediction, we counted the number of
times that the pairs were correctly combined and recalled
in order, across all possible pairs, as a function of presen-

tation order. Figure 8 shows the proportion of perfectly re-
called pairs (colored bars). A vertical comparison of the
plots indicates that the proportion is progressively higher
for the similarity- and rule-based presentations. When sum-
ming across list length, this analysis indicates that 840 pairs
were chunked in the rule-based presentation order (whereas,
902 pairs were not chunked); 626 pairs in the similarity-
based presentation order (against 1116); 365 pairs in the
dissimilarity-based presentation order (against 1377). This
2 × 3 crosstab of the number of chunked pairs vs the num-
ber of nonchunked pairs accross order types yielded a sig-
nificant statistical nonindependance between order type and
chunking (χ2(2) = 285, p < .001; gamma ordinal test, .39,
p < .001) showing that there was an advantage for recalling
pairs of objects for similarity-based and rule-based presen-
tation order. The odds-ratio between the rule-based order
and the dissimilarity-based order indicates a basic size ef-
fect: chunking a pair was (840/902)/(365/1377) = 3.5 times
as likely in the rule-based condition than in the dissimilarity
condition.

A similar pattern of results was observed when we used a
less strict scoring procedure, by counting one pair as chun-
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Figure 6. Proportion of correct sequences recalled as a function of Feldman Complexity (FC), at constant sequence lengths. Means and
standard errors are based on the 3217 trials to include the whole variance. The error bars show ± one standard error.
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ked even when it was not recalled at the correct position. For
instance, when a 1-2 pair in the list was recalled in correct
order within the pair, but at incorrect positions, for instance
2-3, the chunked was counted as correctly recalled. In this
case 972 pairs were chunked in the rule-based presentation
order (whereas, 770 pairs were not chunked); 696 pairs in
the similarity-based presentation order (against 1046); 451
pairs in the dissimilarity-based presentation order (against
1291). This 2 × 3 crosstab also yielded significant statistics
(χ2(2) = 324, p < .001; gamma ordinal test, .40, p < .001)
showing a same advantage for more regular orders.

We then focused on the first quadruplet (items on posi-
tions 1-4). Figure 9 shows the proportion of perfectly re-
called quadruplets at positions 1-2-3-4. The proportion is
again progressively higher for the similarity- and rule-based
presentations at constant list lengths. The crosstab indicated
that the quadruplets were chunked 290 times in the rule-
based presentation order (whereas, 380 quadruplets were not
chunked); 182 times in the similarity-based presentation or-
der (against 488); 101 times in the dissimilarity-based pre-
sentation order (against 569). The 2× 3 crosstab of the num-
ber of chunked quadruplets vs the number of nonchunked
quadruplets showed similar effects (χ2(2) = 132, p < .001;
gamma ordinal test, .45, p < .001). The same odds-ratio
indicated a (290/380)/(101/569) = 4.3 times more chance
of chunking the first quadruplet in the rule-based condition
than in the dissimilarity condition.

Experiment 2

The aim of this experiment was to adapt Experiment 1
using a different procedure for measuring the span, that is,
by increasing the number of objects progressively until the
participant could not recall a list perfectly. A second goal
was to make this experiment the hardest possible by prevent-
ing chunking processes. Our hypothesis was that participants
could not reach a span greater than the magical number 3/4
(Cowan, 2001) in this condition.

Participants. Ninety five students enrolled at the Univer-
sity of Franche-Comté or the University of Nice, M = 21.4
years old (sd = 3.7), volunteered to participate in this quick
experiment.

Procedure. The experimental setting was similar to
Experiment 1, except that the number of objects in the
list progressively increased until supraspan conditions were
reached. There were two different lists of objects by list
length. The experiment automatically stopped after two con-
secutive errors. The most heterogeneous categories (i.e.,
noncompressible categories) were chosen for each list length
and a dissimilar order was applied to the list so that the
overall distance between the objects would be maximal for a
given list. For instance we used the categories for which FC

= 6 when two objects were used; FC = 8 for three objects;
FC = 10 for four objects, etc.

The participants were again asked to recall the objects in
order. The experiment lasted on average around 5 minutes.
The procedure did not include any warm-up.

Scoring. A .5 value was cumulated for each perfectly cor-
rect serial report of a list. For instance, a participant who
correctly recalled two lists of one object, two lists of two
objects, and only one list of three objects was granted a span
of 2.5.

Results

The experiment was found very difficult for participants,
which is confirmed by the results. Figure 10 shows the his-
togram of the span. A mean span of 2.5 (std = 0.6) was found
across participants, a value slightly inferior to the 3/4 capac-
ity limit. This measure seems however quite stable since we
had obtained the exact same estimate from our first sample of
60 students from the Université de Franche-Comté (a sample
size that we had already increased at that time in order to
confirm the low span).

Discussion

Short-term and long-term memory. The chunking mem-
ory span task presented in this study provided a way to ob-
serve the birth of a chunk in working memory. This task
required the participants to memorize diverse sequences of
objects with possible associations between them, but the as-
sociations were induced by informativeness instead of be-
ing spontaneously created by participants (K. Z. Li, Blair,
& Chow, 2010; Logan, 2004). Also, chunking effects
were induced within-sequences, without relying on render-
ing chunking more familiar via repeated exposure (Majerus,
Perez, & Oberauer, in press), a procedure that invited partic-
ipants to chunk information ‘on the fly’ (a process that could
be assimilated to grouping, as discussed later). When Feld-
man’s (2000) rules of classification were used to measure
the compressibility of each sequence of stimuli, the com-
pressibility of the sequences and their presentation order both
showed significant influences on recall performance and re-
sponse times. Recall performance greatly varied around a
mean span of about 4 objects or less (at 50% corect), de-
pending on whether chunking could lower memory demand
by data compression. These variations in performance mean
that chunking processes can operate during short-term mem-
orization. The first conclusion is therefore that chunks must
not be uniquely considered as groupings of information in
long-term memory. We believe that we observed a chunking
process that seems to result from the temporary creation of
new logical abstraction, or in other terms, that this chunk-
ing process does not necessarily result from the recruitment
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Figure 7. Serial-position curves (mean proportion correct) as a function of list length and presentation order. The blue, red and green colors
stand for Rule-based, Similarity-based, and Dissimilarity-based respectively, to follow Fig. 5.

Figure 8. Mean proportion of correct recalled two-object pairs using strict serial-position scoring (pairs in positions 1-2, 3-4, 5-6, 7-8) as a
function of list length and presentation order. The blue, red and green colors stands for Rule-based, Similarity-based, and Dissimilarity-based
respectively, to follow Fig. 5.

of long-term memory structures. It is possible that our par-
ticipants spontaneously compressed information without a
strong mediation of long-term memory chunks, since none
of our participants probably ever encountered the particular
sequences of objects of our experiment. Memory chunking
probably emerged in short-term memory simply thanks to
the conscious identification of structures in the input stream.
This directly relates to the idea that chunking processes are
mediated by consciousness (Bor & Seth, 2012), especially
when subjects learn rule-based category structures via ex-
plicit processes (Ashby & Ell, 2001). Therefore, the chunk-
ing memory that our tasks refer to does not exactly corre-
spond to the notion of conceptual short term memory de-
velopped by Potter, which operates by allowing meaningful
patterns in long term memory to be identified in short term
memory unconsciously and without the need to rehearse the

material (Potter, 1993, 2012).

Capacity. Our results corroborate the hypothesis of a
limited capacity of short-term memory of about 3.5 items
at 50% correct recall, a capacity limit that is close to the
one evaluated by Cowan, about 4 ± 1 items. The capacity
is also close to an estimation made by Brady, Konkle and
Alvarez (2009) who suggest that short-term memory capac-
ity is about 10 bits of information for this type of material.
Since each of the stimuli making up our material counted
three informational units – shape, color and size -, retaining
3.5 items corresponds to a capacity to code and recall 10.5
bits of information. However, this computation is made by
considering that the recall of objects was independent, which
was not the case since the effects of chunking were present.
Consequently, the 3.5 limit could also confirm the observa-
tions of Luck and Vogel (1997) that individuals retain objects
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Figure 9. Mean proportion of perfectly correct recall of the first quadruplet (items in positions 1-4) as a function of list length and
presentation order. Note. The slight nonmonotonicity caused by the condition in which there were 6 to-be-recalled objects seems to have
been caused by the categories for which FC = 6, in which the first quadruplet was difficult to encode in comparison to the case for which FC
= 5. Greater monotonicity (as a function of list length) was observed when this condition was removed from the analysis. The blue, red and
green colors stands for Rule-based, Similarity-based, and Dissimilarity-based respectively, to follow Fig. 5.

Figure 10. Mean span for Experiment 2. Note. Objects lists were designed to prevent chunking.

and not features (otherwise, again, the span would present a
much higher value, that is 3.5 × 3 = 10.5 features), although
we acknowledge that this claim tends to ignore the complex
literature that directly examines this question (Bays, Cata-
lao, & Husain, 2009; Bays, Wu, & Husain, 2011; Brady et
al., 2011; Fougnie & Alvarez, 2011; Wheeler & Treisman,
2002). More importantly, the 3.5 limit confirms that our
study on chunking concerns STM processes.

The results of the present study tend to agree with an inter-
mediary point of view that the informational load determines

the number of objects which can be retained (Alvarez & Ca-
vanagh, 2004; Bays & Husain, 2008; Brady et al., 2009).
More objects can be unpacked when more information can
be compressed within chunks. However, to be more pre-
cise, the difference between our study and previous ones
(e.g., Alvarez & Cavanagh, 2004) is that the informational
load does not concern items but rather relational informa-
tion about individual items. In this respect, our primary goal
involved characterizing the ability of observers to remem-
ber more items that allow encoding joint-information (Jiang,
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Olson, & Chun, 2000). Our results show that items of the
memory sequence are not represented independently. Effec-
tively, for any sequence of N objects, the sum of the visual
informational load was constant in our study when the items
were considered independently. However, the information
load varied according to how the set of items could be en-
coded. This is why we believe our study directly taps into
chunking processes, that is, the ability to group items so as
to reduce the load of information. Moreover, chunks (such
as FBI) are often seen as allowing the retrieval of their con-
tent. Our view is similar here since a group of objects can be
unpacked from a chunk (e.g., squares = “large black , small
black square, etc.”. Chunking in our study was neither the
result of perceptual grouping (such as spatial proximity) nor
the result of knowledge stored in long-term memory (such
as F+B+I = FBI), but the effect of a conceptual organization
that could be built in a few seconds.

Representation formats. We believe that our results show
that the mechanism by which compressibility by itself helps
retention of one ordered list is clearly determined by the
chunk that can be formed using order information, which we
have represented using embedded structures such as “trian-
gle[white:...[small:...]]”. This structure means that the tri-
angle objects have to be listed by color (beginning with the
white), and that a small:large order is embedded into the
color order. Note that the “triangle[white:...[small:...]]” rep-
resentation is short for “triangle[white:black[small:large]]”,
since there exists only two features by dimension, ‘...’ is the
default opposite feature. Listing all the white triangles us-
ing the small:large order, for instance, would rather require a
representation such as “triangle[white[small:...]]” or simply
“white triangle[small:...]]”.

The “triangle[white:...[small:...]]” compressed represen-
tation can be decompressed into a “triangle/white/small, tri-
angle/white/large, triangle/black/small, triangle/black/large”
ordered list, which comprises the original 12 features. When
no such compression is possible (e.g., (large white or small
black) square or (large black or small white) triangle; when
FC = 10), the representation must contain almost as many
features as in the original list of objects. On the contrary,
when the category for which FC = 1 is ordered in a way
that does not allow regularity, the memorization of all ob-
jects –unordered– can be facilitated by its global compress-
ibility (“triangles”), unlike the memorization of the ordered
objects (e.g., large white triangle, small black triangle, small
white triangle, large black triangle), which still need to be
expressed using a longer representation such as triangle[large
white, small[black:...], large black]. Therefore, a compress-
ible category that is not ordered regularly can be as difficult
to memorize as a noncompressible one. This is noticeable in
Fig. 5 in which the mean data point for FC = 10 (black curve)
is very close to the mean data point for the dissimilarity green

curve. Again, when no compressibility is allowed in the first
place, order does not matter much anymore. Note that this
idea implies that the items in a list formed from a compress-
ible category require shorter verbal descriptions, which can
be used to encode the list.

Short-term memory vs working memory. More impor-
tantly, we think that the chunking memory span tasks devel-
oped in this study and in a previous one (Mathy & Feldman,
2012) offer a valuable option to the WM/STM distinction
(Colom, Rebollo, Abad, & Shih, 2006; Engle, 2002; Ober-
auer, 2009). STM is primarily concerned with storage. WM
is most often characterized by a system dedicated to both
short-term storage and the processing of information. This
view has been translated in the complex span paradigm, in
which the storage of memory items alternates with process-
ing the not-to-be-remembered material. On the contrary, our
chunking memory span tasks require the participants to ma-
nipulate the to-be-remembered material. Finally, the strong
relationship found between STM and WM and their common
variance with more general cognitive abilities (Colom et al.,
2006) could be interpreted otherwise if WM was compared
to chunking memory. Generally, the concurrent task directs
the focus of attention away from the memory items. Here,
the focus of attention promotes the grouping, chunking, and
direct memorization of items. The to-be-tested idea is that
the processing component plays a more major role when ded-
icated to memory items, which can lead to a better prediction
of complex cognitive abilities such as reasoning, intelligence,
or academic performance. Effectively, a weak storage com-
ponent can be supported by a powerful processing compo-
nent. Overall, the storage-processing combination might be
the most correct composite variable for predicting cognitive
abilities. Further analysis shall involve, for instance, study-
ing the extent to which STM, WM and chunking memory
spans are related to each other. We have recently completed
a study in our lab, which tends to show that performance
in chunking memory span tasks for alphanumerical material
correlate better with WM spans than simple letter spans do,
especially for memory updating tasks that also require to pro-
cess the to be-remembered items (Mathy & Varré, 2013).

Compressibility of information. In this study, the mea-
sure of compressibility of information is based on the work
of Feldman (2000) who rigorously quantified a metric that
predicts psychological difficulty in categorization processes.
The metric of Feldman makes it possible to evaluate the cost
of encoding, when it is understood that complexity is not sen-
sitive to the relative choice of a description language (M. Li
& Vitányi, 1997). In the present study, recall performance
was significantly enhanced for compressible sequences com-
pared to less compressible sequences. If new categories were
effectively dynamically made on the fly, it would mean that
categorization complexity applies at the very beginning of
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the learning process. This result can be explained by a re-
duction in the quantity of information encoded that results
from the individuals’ capacity for abstraction in a short pe-
riod of time, with no necessity for long-term memory pro-
cesses to operate (French, Addyman, & Mareschal, 2011).
Our results tend to reinforce the validity of Feldman’s met-
ric. Effectively, in a general manner, whatever the length of
the sequence, the higher the complexity index, the lesser the
probability of chunking (i.e., performance decreases in a sig-
nificant way). The effect is more pronounced if performance
is measured at a constant length as a function of logical com-
plexity: performance diminishes significantly when logical
complexity increases. Concerning this point, we agree with
Brady, Konkle and Alvarez (2009) who suggest that chunk-
ing can be used as an approximation of an algorithm of psy-
chological compression. More importantly for the working
memory domain, our study tends to show that the short pe-
riod of time allowed in our tasks (one- or two- second presen-
tations of the memory items) is sufficient to allow a process
of lossless abstraction to occur (when recall is perfect). This
result adds to a previous observation that memory for indi-
vidual items can also be biased by a lossy form of abstraction
(Brady & Alvarez, 2011).

An important point is that compressibility can help item
memory without having all the items to be held in memory
already. Effectively, the lossless compression process allows
the objects to be recovered from the compressed informa-
tion. For instance, a chunk such as “square:[large:[black:]]”
can be regarded as a shorter description (i.e., a definition)
of the category defined in extension by “large black square,
large white square, small black square, small white square,
large black circle, large white circle, small black circle, small
white circle”. Absolutely no information is lost if the shorter
representation serves as a generator for ordering hierarchi-
cally all the square shapes first, beginning with the large
ones and, among the large ones, always beginning with the
black ones. This resembles an algorithmic structure in which
three loops are embedded: for shape = square : circle, for
size = large : small, for color = black : white, concatenate
(shape,size,color). The shorter representation can therefore
be thought as a pseudo algorithm. On the contrary, there is
no way to compress a category such as “large black square,
small white square, large white circle, small black circle”,
which requires a more extensive description in STM.

A partial correlation analysis was carried out to show
that at a constant length, compressibility and correct propor-
tion are negatively linked. This was intended to go beyond
the potential confound between compressibility and category
length due to item order: long sequences can be highly com-
pressible. For instance, the two categories on the second
line of Figure 3 have equivalent Feldman Complexity, but
recovering the order of all the “small or square” objects in
comparison to the “large triangles” is necessarily more dif-

ficult. Some readers might argue that another confound re-
lates to the possibility of making less item errors with longer
sequences (i.e., with length 8, there was no possibility of
making an item error). As a result, difficulty with longer
sequences was simply underestimated in our study. Our pro-
cedure could have added a number of lures proportional to
the length in the probe image in order to have probe set sizes
always superior to the memory set sizes, for instance adding
a set of 8 different objects in the test window. However, in
our opinion, the extra objects (for instance, the extra objects
could be distinguished by an extra dimensional value, such
as “hatched” instead of plain) would be easily excluded from
the list of the potential items to be recalled. We admit that
not all of our data have the same value for testing our ideas,
but again, our goal was to study how chunking can occur in
WM, focusing on the memorability of different sequences of
the same sequence length, rather than focusing on the de-
crease in performance with sequence length, a topic that has
already been studied extensively.

Presentation order. The manipulation of presentation or-
ders in the sequences aimed to explore the nature of the
process of abstraction used by the participants. The regu-
larity of one order improves the chance of noticing the to-
be-compressed regularities. Our hypothesis was that the re-
duction of information is done by abstracting logical rules,
rather than by forming similarity associations. Following
Mathy and Feldman (2009, submitted), we constructed three
order conditions in making the hypothesis that an order by
rule would favor the compression of material and its subse-
quent recall in the correct order. Conforming to our expecta-
tions, the effect of the order conditions on recall performance
showed better performance when the items were presented
by rule, in distinguishable clusters. Thus, in the Rule condi-
tion, recall was higher than in the Similarity condition, and
even higher than in the Dissimilarity condition.

We believe that the models of short-term memory based
on the distinctiveness of stimuli do not explain these presen-
tation order effects. These models consider that similar items
interfere between themselves and limit the possibility to re-
tain them in a sufficiently distinct way in order to recall them
correctly (Hasher & Zacks, 1988; Lewandowsky, Duncan, &
Brown, 2004; Nairne, 1990, 2002; Oberauer & Kliegl, 2006).
Consequently, these models could predict better recall in the
Dissimilarity condition (this can also be the case in studies on
visual STM: Avons & Mason, 1999, p. 223) given that the
dissimilarity is increased between contiguous pairs of objects
within those lists (although this prediction would not hold
when taking into account the overall within-list similarity
between items, which would be the same across presentation
orders in our tasks). However, the process of chunking can
explain the better recall with consecutive similar stimuli: the
closest shapes were grouped, treated in chunks, and therefore
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they allowed an increase in capacity for recall. The increase
in capacity is then explicable by a compression of informa-
tion which can result from grouping processes, easier and
faster to do when the presentation of the objects is organized
by similarity or clusters. This result supports a more general
finding that similarity can lead to better retention in visual
short-term memory (Johnson, Spencer, Luck, & Schöner,
2009; Lin & Luck, 2009) or verbal working memory (Gupta,
Lipinski, & Aktunc, 2005; Nairne & Kelley, 1999).

Nevertheless, similarity as the exclusive criterion of order
between successive objects led to worse performance than in
the Rule condition. In the Rule condition, regularities were
in part associated with similarities in the presentation order.
However, the similarity between two successively presented
objects was low between two clusters. Moreover, the clusters
of a same sequence grouped pairs of objects in the same or-
der. In conformity with the results of Mathy and Feldman
(2009), we believe that the rule-based order led to higher
performance by favoring the formation of rule abstractions.
This result also goes in the direction of work on free re-
call showing that similar items tend to be recalled together
even if they are not presented together (Bousfield & Cohen,
1953; Hintzman, Block, & Inskeep, 1972; Kruschke, 1996;
Lewandowsky, Brown, & Thomas, 2009; Romney, Brewer,
& Batchelder, 1993). The reorganization of recall is facili-
tated here, because the items are grouped beforehand during
the presentation.

Encoding time. The participants in the 2s condition
showed significantly better recall performance than those in
the 1s condition, although the effect size was low. In the
2s condition, the amount of time between the beginning of
the presentation (displaying the first item) and the beginning
of the recall phase was doubled. Nevertheless, recall was
the more effective in the 2s condition. This result does not
go in the direction of a single mnemonic deterioration due
to time (Baddeley, 1986; Barouillet, Bernardin, & Camos,
2004; Barouillet, Bernardin, Portrat, Vergauwe, & Camos,
2007; Burgess & Hitch, 1999; Henson, 1998; Jonides et al.,
2008; Nairne, 2002; Page & Norris, 1998) since more time
allowed better recall. This result is explained by the differ-
ence in processing time allotted to the chunking process.

Chunking vs Grouping

Our use of the term chunking differs from the definition
adopted by most researchers. The chunking memory span
terminology that we have favored in our previous research
(Mathy & Feldman, 2012; Mathy & Varré, 2013) empha-
sizes that a chunking process can be induced in a short term
time by allowing associations to be made between items that
present regularities. On one hand, similar manipulations
(e.g., induced associations between pairs of words, temporal
or spatial grouping) that have been made in the serial recall

literature refer to a grouping process (Anderson & Matessa,
1997; Frankish, 1985; Hitch et al., 1996; Henson et al.,
1996; Ng & Maybery, 2002; Maybery et al., 2002; Ryan,
1969). Anderson & Matessa (1997) for instance state that
“knowledge units are called ‘chunks’ by Anderson (1993)”,
but that they “have repressed this terminology to avoid con-
fusion with the term chunk as it is used in a different sense in
the serial memory literature” (footnote p. 730). On the other
hand, it is also true that the ‘grouping’ notion is ambiguous
as it is also used (Feldman, 1999)4 in the perception domain
to refer to a low-level process that allows a set of visual ob-
jects to be organized into patterns, and which is assumed to
be automatic and preattentive, whereas grouping in the serial
recall literature is most often conscious and deliberate. Also,
by using our chunking memory span terminology, we wish
to introduce a differentiation between a grouping process
by which groups of objects are segregated (spatially or tem-
porarily) and a chunking process by which associations are
made within groups. Our experiments effectively manipulate
within-group associations instead of between-group separa-
tions. The only difference with previous studies (working
memory: (Chen & Cowan, 2005; Cowan et al., 2004) ; gram-
mar learning: (French et al., 2011; Servan-Schreiber & An-
derson, 1990)) is that associations are expected to be made
‘on the fly’, a short-term process that does not necessarily
necessitate repetition. Future studies may show that the birth
of chunks that we observe in our experiments (when learning
is not involved) could effectively lead to stronger associa-
tions and better chunking if lists of objects were presented
more than once (i.e., when learning would be involved). One
clear example of such continuity is shown by Cowan et al.
(2004) in their first experiment, in which the recall of a pair
of words learned only once was already better recalled on
average than the singletons (and as expected, recall was a
monotonic function of repetition). Therefore, although ar-
guable, we chose to keep the chunking terminology because
1) it can make sense that there is not always a fundamental
difference between short-term memory and long-term mem-
ory (Surprenant & Neath, 2009), and 2) we wished to remain
consistent with our previous publications’

Conclusion

Our objective was to measure the capacity of short-term
memory while allowing chunking processes to occur. We
also aimed at dealing with the well-known issue of defin-
ing and measuring chunks by taking advantage of earlier re-
search on learnability and compressibility. The experiment
presented in this paper allows us to draw the conclusion that
chunking is not only a matter of using representations that are
familiar from long-term experience, but that chunks can be

4 Feldman, J. (1999) The role of objects in perceptual grouping.
Acta Psychologica, 102, 137-163.
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formed in working memory in a few seconds by capitalizing
on the compressibility of information. Our research shows
that the notion of compression is central to define chunking,
and also that independently from the redundancy that makes
the sequences of objects more compressible, the participants
benefit from other encoding possibilities depending on the
order in which objects are presented. As a consequence, the
sequences offering the most logical regularity are the easiest
to retain, especially when the abstraction of the regularities
is favored by the ordering of objects within sequences.
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Mathy, F., & Varré, J. S. (2013). Retention-error patterns in com-
plex alphanumeric serial-recall tasks. Memory.

Maybery, M. T., Parmentier, F. B. R., & Jones, D. M. (2002).
Grouping of list items reflected in the timing of recall: Impli-
cations for models of serial verbal memory. Journal of Memory
and Language, 47(3), 360-385.

McKeithen, K. B., Reitman, J. S., Rueter, H. H., & Hirtle, S. C.
(1981). Knowledge organization and skill differences in com-
puter programmers. Cognitive Psychology, 13, 307-325.

Medin, D. L., & Bettger, J. G. (1994). Presentation order and recog-
nition of categorically related examples. Psychonomic Bulletin
& Review, 1, 250-254.

Medin, D. L., & Schaffer, M. (1978). A context theory of classifi-
cation learning. Psychological Review, 85, 207-238.

Miller, G. A. (1956). The magical number seven, plus or minus
two: Some limits on our capacity for processing information.
Psychological Review, 63, 81-97.

Nairne, J. S. (1990). A feature model of immediate memory. Mem-
ory & Cognition, 18, 251-269.

Nairne, J. S. (2002). Remembering over the short-term: the case
against the standard model. Annual Review of Psychology, 53,
53-81.

Nairne, J. S., & Kelley, M. R. (1999). Reversing the phonological
similarity effect. Memory & Cognition, 27, 45-53.

Naveh-Benjamin, M., Cowan, N., Kilb, A., & Chen, Z. (2007).
Age-related differences in immediate serial recall: Dissociating
chunk formation and capacity. Memory & Cognition, 35, 724-
737.

Ng, H. L., & Maybery, M. T. (2002). Grouping in short-term verbal
memory: is position coded temporally? Quarterly Journal of
Experimental Psychology, 55, 391-424.

Nosofsky, R. M. (1986). Attention, similarity, and the
identification-categorization relationship. Journal of Experi-
mental Psychology: General, 115, 39-57.

Oberauer, K. (2009). Interference between storage and processing
in working memory: Feature overwriting, not similarity-based
competition. Memory & Cognition, 37, 346-357.

Oberauer, K., & Kliegl, R. (2006). A formal model of capacity
limits in working memory. Journal of Memory and Language,
55, 601-626.

Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object
based? rejection of the ”strong-object” hypothesis. Perception
& Psychophysics, 64, 1055-1067.

Page, M. P., & Norris, D. (1998). The primacy model: a new model
of immediate serial recall. Psychological Review, 105, 761-781.

Perlman, A., Pothos, E. M., Edwards, D. J., & Tzelgov, J. (2010).
Task-relevant chunking in sequence learning. Journal of Exper-
imental Psychology: Human Perception and Performance, 36,
649-661.

Perruchet, P., & Pacteau, C. (1990). Synthetic grammar learning:
Implicit rule abstraction or explicit fragmentary knowledge?.
Journal of Experimental Psychology: General, 119, 264-275.

Potter, M. C. (1993). Very short-term conceptual memory. Memory
& Cognition, 21, 156-161.

Potter, M. C. (2012). Conceptual short term memory in perception
and thought. Frontiers in Psychology, 3(113).

Pylyshyn, Z., & Storm, R. (1988). Tracking multiple independent
targets: evidence for a parallel tracking mechanism. Spatial Vi-
sion, 3, 1-19.

Romney, A. K., Brewer, D. D., & Batchelder, W. H. (1993). Pre-
dicting clustering from semantic structure. Psychological Sci-
ence, 4, 28-34.

Ryan, J. (1969). Grouping and short-term memory: different means
and patterns of grouping. Quarterly Journal of Experimental
Psychology, 21, 137-147.

Servan-Schreiber, E., & Anderson, J. R. (1990). Learning artificial
grammars with competitive chunking. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 16, 592-608.

Shepard, R. N., Hovland, C. L., & Jenkins, H. M. (1961). Learn-



22 CHEKAF & MATHY

ing and memorization of classifications. Psychological Mono-
graphs, 75, 13, whole No. 517.

Simon, H. A. (1974). How big is a chunk? Science, 183, 482-488.
Smyth, M. M., Hay, D. C., Hitch, G. J., & Horton, N. J. (2005).

Serial position memory in the visual—spatial domain: Recon-
structing sequences of unfamiliar faces. Quarterly Journal of
Experimental Psychology: Section A, 58, 909-930.

Surprenant, A. M., & Neath, I. (2009). Interactions between short-
term and long-term memory in the verbal domain. In A. Thorn
& M. P. (Eds.) (Eds.), (p. 16-43). Hove, UK: Psychology Press.

Terrace, H. S. (1987). Chunking by a pigeon in a serial learning
task. Nature, 325, 149-151.

Terrace, H. S. (2001). Chunking and serially organized behavior
in pigeons, monkeys and humans. In R. G. Cook (Ed.), Avian
visual cognition. [On-line]. Medford, MA: Comparative Cogni-
tion Press, available at: www.pigeon.psy.tufts.edu/avc/terrace/.

Tulving, E., & Patkau, J. E. (1962). Concurrent effects of con-
textual constraint and word frequency on immediate recall and

learning of verbal material. Canadian Journal of Experimental
Psychology, 16, 83-95.

Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term
visual memory. Journal of Experimental Psychology: General,
131, 48-64.

Wickelgren, W. A. (1967). Rehearsal grouping and hierarchical
organization of serial position cues in short-term memory. The
Quarterly Journal of Experimental Psychology, 19, 97-102.

Xu, Y. (2002). Limitations of object-based feature encoding in
visual short-term memory. Journal of Experimental Psychology:
Human Perception and Performance, 28, 458-468.

Zhang, G., & Simon, H. A. (1985). Stm capacity for chinese words
and idioms: Chunking and acoustical loop hypotheses. Memory
& Cognition, 13, 193-201.

Zhang, W., & Luck, S. (2008). Discrete fixed-resolution represen-
tations in visual working memory. Nature, 453, 233-236.


